Recent heavy ion results from CMS

Subash Chandra Behera on behalf of the CMS Collaboration

Indian Institute of Technology Madras

22nd edition International Conference on Particle and Nuclear Interaction PANIC 2021, 5-10 September

Subash Behera, IITM

Subash Behera, IITM

6

Recent heavy-ion results

Subash Behera, IITM

Outline

Intial state interaction :

- New constraints of initial states in PbPb collisions with Z boson yields and azimuthal anisotropy
- Search for strong electromagnetic fields in PbPb collisions via azimuthal anisotropy of D^0 and \overline{D}^0 mesons
- Forward neutron multiplicity dependence of dimuon acoplanarity in ultra-peripheral PbPb collisions

QGP medium effect:

- First observation of B⁰_s in PbPb
- J/ ψ meson within a Jet in PbPb and pp collisions
- Probing charm quark dynamics via multiparticle azimuthal correlations

Intial state interaction

Subash Behera, IITM

Z boson yields and azimuthal anisotropy

Phys. Rev. Lett. 127, 102002

• The Z boson azimuthal anisotropy (v₂) is compatible with zero within the uncertainties.

Azimuthal anisotropy of D^0 and \overline{D}^0 mesons

CMS

v_2 & v_3 as function of Centrality and Rapidity

- \bullet Clear dependence of v_2 as function of centrality
- v₃ is almost constant with centrality
- \bullet v_n trends understood in terms of collision geometry
- Slight tendency to lower values at larger rapidities

$\Delta V_2(D^0 - \overline{D}^0)$ as a Function of Rapidity

Electric field generates non-zero Δv_2

PLB 816 (2021) 136253

Subash Behera, IITM

Dimuon acoplanarity in UPC PbPb

Rapidity dependence of α spectrum

$\langle \alpha^{\rm core} \rangle$ vs. neutron multiplicity

Subash Behera, IITM

QGP medium effect

Subash Behera, IITM

PANIC 2021, 5-10 September

14

Ratio of B_{s}^{0} & B^{+} Vs p_{T} & $< N_{part} >$

CMS-PAS-HIN-19-011

- Strangeness enhancement in PbPb may increase the yield of B_s^0
- Ratio of B_s^0 / B^+ is similar in PbPb & pp collisions.

Subash Behera, IITM

J/Ψ within jets

arXiv:2106.13235

Subash Behera, IITM

- Connected to quenching and hot nuclear effect in PbPb
- J/Ψ within the jets are more suppressed in central collision

Probing charm quark dynamics via azimuthal correlations

CMS-PAS-HIN-20-001

Barrel region: |y| < 1

- $v_2{4} < v_2{2}$
 - azimuthal anisotropies are affected by the initial state geometry and it is by EbyE fluctuation
- v₂{4}(D⁰) < v₂{2}(D⁰) ratio are consistent with those for the charged particles
 ∞ suggests soft processes are dominant.

Subash Behera, IITM

PANIC 2021, 5-10 September

CMS

Probing charm quark dynamics via azimuthal correlations

- v₂{4} increases from the most central to mid-central events and decreases toward the peripheral events.
 - This trend can be explained by the initial state geometry .
- $D^0 v_2\{4\}(\text{cent.}) / D^0 v_2\{2\}(\text{cent.})$ are compared to those charged particles.
 - This indicates splitting between the D^0 mesons and charged particles in the most central and peripheral events
 - Hard fluctuation effect visible from charm mesons

Barrel region: |y| < 1

CMS-PAS-HIN-20-001

PANIC 2021, 5-10 September

CMS

Summary

PbPb 5.02 TeV (1.5 nb

 STARlight ---- b-dep. γ p₋

ly |<2.4

1_{n1n}

ō_{nχη}

OnOn

0_{n1n}

 $p_{-}^{\mu} > 3.5 \text{ GeV}, \ h_{-}^{\mu} l < 2.4$

< 60 GeV

 n_{χ_n}

1.6<mark>×10</mark>⁻ CMS

1.5

1.4

1.2

Probing Initial state effect:

- $\langle \alpha^{core} \rangle$ • *b* dependence of initial photon $p_{T,}$ photon energy (M¹⁴) (GeV)
- Indicates the presence of initial collision geometry

Subash Behera, IITM

- v_n trends understood in terms of collision geometry
- Constrain medium properties: electric conductivity

Summary

Probing QGP medium effect :

• J/Ψ in the jets more suppressed in central

Subash Behera, IITM

- Suggests soft processes are dominant
- Azimuthal anisotropies are affected by the initial state geometry

• Ratio of B_s^0 / B^+ is similar in PbPb & pp collisions.

Thank you!

All CMS results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsHIN

Subash Behera, IITM

Backup

Subash Behera, IITM

First observation of B⁰_s in PbPb

CMS-PAS-HIN-19-011

• Strangeness enhancement in PbPb may increase the yield of B_s^0

Two particle correlation in UPC pPb

• No ridge-like structure is observed in minimum-bias pPb and yp enhanced system

Subash Behera, IITM

Two particle correlation in UPC pPb

- The $V_{2\Delta}$ coefficient is positive while $V_{1\Delta}$ is negative suggesting a strong effect of jet-like correlations.
- The flow coefficient $v_2(p_T)$ increases with p_T

PANIC 2021, 5-10 September

CMS-PAS-HIN-18-008

BACKUP

• Single-particle azimuthal anisotropy v_2 versus N_{trk} for γp enhanced and minimum-bias samples in two different pT regions.

Subash Behera, IITM

Forward Rapidity Gap

Strange particle collectivity

CMS-PAS-HIN-19-004

- Fluctuations are stronger in pPb than PbPb.
- Model do not describe the data.

 $\frac{\sigma}{\langle v_2 \rangle} = \sqrt{\frac{v_2 \{\text{SP}\}^2 - v_2 \{4\}^2}{v_2 \{\text{SP}\}^2 + v_2 \{4\}^2}}$

[Raghunath talk, 15:08 PM]

Strange particle collectivity

CMS-PAS-HIN-19-004

- Fluctuations are stronger in pPb than PbPb.
- Model do not describe the data.

[Raghunath talk, 15:08 PM]

Collectivity in $\Upsilon(1S), \Upsilon(2S)$

• The $\Upsilon(1S)$ v₂ values are consistent with zero within the uncertainties.

Subash Behera, IITM

[Raghunath talk, 15:08 PM]

PANIC 2021, 5-10 September

CMS