Strange, charm, and bottom hadrons flow in pPb and PbPb with CMS

Raghunath Pradhan Barrels On behalf of the CMS collaboration

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16m² ~137,000 channel

Indian Institute Of Technology Madras

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

22nd Particles and Nuclei International Conference 5-10 Sep 2021, Lisbon, Portugal

CRYSTAL

Outline

Collective Phenomena:

In large system (A-A collisions):

- What are the properties of the medium created?
- How partons interact with the medium?

In small system (p-p and p-A collisions):

• Do we observe similar effect in small system as in large system?

- Light Flavor: up, down, strange and multi-strange hadron
- Heavy Flavor: charm, bottom, top

Introduction: Two Particle Correlation

CMS

Long range($|\Delta \eta| > 2$), near side($\Delta \phi \approx 0$) angular correlation

Nature of the ridge

Ridge in strange hadron

CMS Detector

Strange hadron v₂

p_ dependence v_2 of k_S^0, Λ from long range correlation

- Significant p_T dependent v_2 in both pPb and PbPb
- Follow mass ordering at low p_T (Radial flow)
- Number of constituent quark scaling:
 - Strange hadrons following universal trend in pPb
 - Violation in PbPb up to 25% compared to pPb in higher KE_T/n_q

Strange hadron v₃

pT dependence v_3 of k^0_{ς}, Λ from pPb **PbPb** CMS pPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ CMS PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ long range correlation $L_{int} = 35 \text{ nb}^{-1}$ $L_{int} = 2.3 \ \mu b^{-1}$ $185 \le N_{trk}^{offline} < 350$ \mathbf{K}_{s}^{0} K_{s}^{0} (0-0.06%) 0.10 0.10 • $\Lambda/\overline{\Lambda}$ $\Lambda/\overline{\Lambda}$ • Significant p_T dependent v_3 in ⇔ h[±] ⇔ h[±] °° °° both pPb and PbPb 0.05 0.05 $185 \le N_{trk}^{offline} < 350$ (58±4%) • Positive v₃ signifies geometry 0.00 0.00 ²p_T (GeV) p_T (GeV) driven fluctuation 0.04 0.04 • Both pPb and PbPb showing u/⁶0.02 u^b/^e0.02 similar behavior for strange hadron. ---- Polynomial fit to k ---- Polynomial fit to K⁰ 0.00 0.00 Similar origin? Data/Fit 1.5 Data/Fit 1.0 1.0 0.5 0.5 2.0 0.0 0.5 1.5 0.0 0.5 2.0 1.5 ĺΚΕ_τ/n_α (GeV) KE_T/n_q (GeV) Phys. Lett. B 742 (2015) 200

Bornel Clube

Strange hadron v₂

p_T dependence v_2 of k_S^0 from multi-particle correlation

Strange hadron v₂

\mathbf{p}_{T} dependence v_2 of Λ from multi-particle correlation

\mathbf{p}_{T} dependence v_2 of prompt D^0

- Heavy quarks are produced in the early stage of collisions
 - Experience the full evolution of the produced medium
- Clear trend of rising and declining with p_T
- Clear mass ordering at $p_T < 2$ GeV in pPb
 - Indicating significant collective behavior of charm quark in small system
- v_2^{sub}/n_q of D⁰ in KE_T/n_q < 1.5 GeV, is smaller than strange hadron in pPb
 - Weaker collectivity of charm quark in pPb
- In PbPb, following universal trend in $KE_T/n_q < 1.0 \text{ GeV}$
 - Strong collectivity in PbPb

Phys. Rev. Lett. 121, 082301 (2018)

Raghunath Pradhan, IITM

Phys. Lett. B 813 (2021) 136036

Adding prompt J/ψ

- Heavy quarks are produced in the early stage of collisions
 - Experience the full evolution of the produced medium
- Positive v_2 value in $2 < p_T < 8 \text{ GeV}$
- $v_2(D^0)$ and $v_2(J/\psi)$ smaller than strange hadron in entire p_T range
 - ► $v_2(c) < v_2(u, d, s)$
 - Flavor hierarchy
- $v_2^{sub}/n_q(J/\psi) < v_2^{sub}/n_q(D^0)$, for $KE_T/n_q > 1.0 \text{ GeV}$
 - $D^0(c,\overline{u}), J/\psi(c,\overline{c})$

Prediction from CGC model

pPb

- Prediction of $J/\psi v_2$ from CGC model
 - Correlations between partons originated from the projectile proton and dense gluons inside the target nucleus
- Qualitative agreement between data and theory for J/ψ
 - Suggesting that initial-state effects may play an important role in the generation of collectivity for these particles in pPb collisions

Phys. Lett. B 813 (2021) 136036

Bottom hadron v₂

p_T dependence v_2 of non prompt D^0

- Non-prompt D⁰ originate primarily from B hadron
 - Contain 50% of B transverse momenta based on MC simulations using PYTHIA 8.209 and tune CUETP8M1
- Have a larger distance of closest approach
- v_2 of non-prompt D^0 consistent with zero in low p_T , while in high p_T , hint of a positive v_2
- $v_2(\text{prompt } D_0) > v_2(\text{non-prompt } D_0) \text{ in } 2 < p_T < 5$ GeV
- Indication of Flavor hierarchy of collectivity signal
 - Heavier quark tend to develop a weaker collective v₂ signal

Phys. Lett. B 813 (2021) 136036

PANIC 2021, Portugal, 5-10 Sep 2021

CMS

Bottom hadron v₂

Centrality and p_T dependence v_2 of $\Upsilon(1S)$ and $\Upsilon(2S)$

• v_2 of $\Upsilon(1S)$ and $\Upsilon(2S)$ consistent with zero within the statistical uncertainties

- Significant p_T dependent v_2 and v_3 observed for the strange hadrons in pPb and PbPb
- Strange hadron flow fluctuation is larger in pPb than PbPb
- D^0 and $J/\psi v_2$ is smaller than strange hadron in entire p_T range
- Evidence of weaker collectivity of charm quark in pPb than PbPb
- Multiplicity dependence v_2 measured for D⁰ meson in pPb
- Qualitative agreement from CGC model for J/ψ
- Non-prompt $D^{0}V_{2}$ consistent with zero in low p_{T} , while in high p_{T} , hint of a positive V_{2}
- v_2 of $\Upsilon(1S)$ and $\Upsilon(2S)$ consistent with zero within the statistical uncertainties

CMS DETECTOR

CMS

Total weight: 14,000Overall diameter: 15.0 mOverall length: 28.7 mMagnetic field: 3.8 T

12,500 tonnes

SILICON TRACKERS Pixel (100x150 μm) ~16m² ~66M channels Microstrips (80x180 μm) ~200m² ~9.6M chann

> SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

Thank You for your attention

2 1 0 - 0 0

RD CALORIMETER artz fibres ~2,000 Channe

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCA)

Brass + Plastic scintillator ~7.000 channels

CMS DETECTOR

CCMS

Total weight: 14,000Overall diameter: 15.0 mOverall length: 28.7 mMagnetic field: 3.8 T

SILICON TRACKERS Pixel (100x150 μm) ~16m² ~66M channels Microstrips (80x180 μm) ~200m² ~9.6M channe

> SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER

FORWARD CALORIMETER

ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO4 crystals

HADRON CALORIMETER (HCA)

Brass + Plastic scintillator ~7.000 channels

Raghunath Pradhan, IITM

PANIC 2021, Portugal, 5-10 Sep 2021

Backup

Strange hadron v₂ Signal extraction

> Multiparticle cumulant v₂{4,6,8}

Q-cumulant

Jet related non-flow in pPb

v₂{4} < v₂{6}!! Large jet related non-flow at low N_{trk}

- To remove non-flow, veto jet method used
 - CMS anti-kt PF hets with bkg subtraction
 - Reject events with at least one jet $p_T > 20$ GeV

Strange hadron v₂ **Signal extraction**

V₂ Signal extraction:

• Two particle correlation technique

$$\frac{1}{N_{\text{trig}}}\frac{\mathrm{d}N^{\text{pair}}}{\mathrm{d}\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi}\left\{1 + \sum_{n} 2V_{n\Delta}\cos(n\Delta\phi)\right\}$$

• v_2 extracted from charge reference particle(0.3 < p_T < 3.0 GeV)

$$v_n\{2, |\Delta\eta| > 2\}(p_T) = \frac{V_{n\Delta}(p_T, p_T^{\text{ref}})}{\sqrt{V_{n\Delta}(p_T^{\text{ref}}, p_T^{\text{ref}})}}, n = 2, 3$$

$$v_n^{\text{signal}} = \frac{v_n^{\text{obs}} - (1 - f_{\text{sig}})v_n^{\text{bkg}}}{f_{\text{sig}}}$$

- f_{sig} is the signal fraction extracted from mass fit
- For back-to-back jet correction

$$V_{n\Delta}^{\text{sub}} = V_{n\Delta} - V_{n\Delta}(N_{\text{trk}}^{\text{offline}} < 35) \times \frac{N_{\text{assoc}}(N_{\text{trk}}^{\text{offline}} < 35)}{N_{\text{assoc}}} \times \frac{Y_{\text{jet}}}{Y_{\text{jet}}(N_{\text{trk}}^{\text{offline}} < 35)}$$

D⁰ v_2 Signal extraction

pPb 8.16 TeV $185 \le N_{trk}^{offline} < 250$ **D**⁰ v_{2} Signal extraction: Data $4.2 < p_{T} < 5.0 \text{ GeV}$ Fit Two particle correlation technique $D^0 + \overline{D^0}$ Signal -1.46 < y_{cm} < 0.54 30 K-π swap Entries / (5 MeV) χ^2 /ndf = 118/49 Combinatorial $\frac{1}{N_{D^0}} \frac{dN^{\text{pair}}}{d\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi} \left(1 + \sum_{n=1}^3 2V_{n\Delta} \cos(n\Delta\phi) \right)$ 20 • v_2 extracted from charge reference particle(0.3 < p_T 10 $< 3.0 \, \text{GeV}$) • Assuming $V_{n\Delta}$ to be the product of single-particle 0.20 anisotropies 0.15[′] $v_n(D^0) = V_{n\Delta}(D^0, \text{ref}) / \sqrt{V_{n\Delta}(\text{ref}, \text{ref})}.$ 1.7 1.8 1.9 2.0 m_{inv} (GeV) • Fit the v_2^{s+b} vs. mass to extract v_2^s Phys. Rev. Lett. 121, 082301 (2018) $v_2^{S+B}(m_{inv}) = \alpha(m_{inv})v_2^S + [1 - \alpha(m_{inv})]v_2^B(m_{inv}),$ • For back-to-back jet correction where

 $\alpha(m_{\rm inv}) = \frac{S(m_{\rm inv}) + SW(m_{\rm inv})}{S(m_{\rm inv}) + SW(m_{\rm inv}) + B(m_{\rm inv})}.$

$$V_{n\Delta}^{\text{sub}} = V_{n\Delta} - V_{n\Delta} (N_{\text{trk}}^{\text{offline}} < 35) \times \frac{N_{\text{assoc}} (N_{\text{trk}}^{\text{offline}} < 35)}{N_{\text{assoc}}} \times \frac{Y_{\text{jet}}}{Y_{\text{jet}} (N_{\text{trk}}^{\text{offline}} < 35)}$$

