

Collective dynamics of heavy ion collisions in ATLAS

Dominik Derendarz on behalf of the ATLAS collaboration PANIC 2021 (Virtual) 08/09/2021

Heavy ion physics program in ATLAS

Complex program of measurements covering

- Collective flow in small & large systems
- Colorless probes electroweak bosons (W/Z) in Pb+Pb
- Colored probes jets & heavy flavour quarks
- Ultra Peripheral Collisions (UPC)

Benjamin Gilbert Wed, 14:12

Christopher McGi Sun, 14:50

Recorded datasets

		System	Year	sqrt(s _{NN}) [TeV]	
		Pb+Pb	2010	2,76	
		Pb+Pb	2011	2,76	(
		pp	2012	8	
inn		pp	2013	2,76	
		p+Pb	2013	5,02	
	1	ow <µ> pp	2015-16	13	
		рр	2015	5,02	
		Pb+Pb	2015	5,02	(
		p+Pb	2016	5,02	
		p+Pb	2016	8,16	(
		Xe+Xe	2017	5,44	
		pp	2017	5.02	

2018

5,02

Pb+Pb

Lint

Global observables of heavy ion collision: collective flow

➡ 3D hydro description of QGP expansion Role of the initial conditions?

Initial asymmetry in the colliding nucleons distribution

ID ($|\eta| < 2.5$) $r_{n|n}(\eta) = \frac{\langle \boldsymbol{q}_n(-\eta) \boldsymbol{q}_n^*(\eta_{\text{ref}}) \rangle}{\langle \boldsymbol{q}_n(\eta) \boldsymbol{q}_n^*(\eta_{\text{ref}}) \rangle}$

FCal (3.2 < $|\eta|$ < 4.9)

 $ID (|\eta| < 2.5)$ $\frac{\langle \boldsymbol{q}_n(-\eta) \boldsymbol{q}_n^*(\eta_{\text{ref}}) \rangle}{\langle \boldsymbol{q}_n(\eta) \boldsymbol{q}_n^*(\eta_{\text{ref}}) \rangle}$ $r_{n|n}(\eta)$:

FCal (3.2 < $|\eta|$ < 4.9)

Measured decorrealtion for v_2 , v_3 and v_4 harmonics in Xe+Xe and compared to that in Pb+Pb.

System size dependence of *longitudinal flow* harmonics decorrelation

Phys. Rev. Lett. 126 (2021) 12230

System size dependence of *longitudinal flow* harmonics decorrelation and transverse flow provides strong constraints for modeling of heavy-ion collisions.

Phys. Rev. Lett. 126 (2021) 12230

Correlation between "radial" (mean p_T) and "transverse" evolution of the system (v_n harmonics)

$$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}}} \sqrt{c_k}}$$

Correlation between "radial" (mean p_T) and "transverse" evolution of the system (v_n harmonics)

$$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}}} \sqrt{c_k}}$$

ATLAS-CONF-2021-001

Strong centrality dependence and sensitivity to the event class definition.

Correlation between "radial" (mean p_T) and "transverse" evolution of the system (v_n harmonics)

$$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}}} \sqrt{c_k}}$$

 $\beta_2 > 0$ Prolate $\beta_2 < 0$ Oblate − RHIC - Au+Au ($β_2 \approx -0.13$), U+U ($β_2 \approx 0.3$) - LHC - Pb+Pb ($\beta_2 \approx 0$), Xe+Xe ($\beta_2 \approx 0.16$)

ATLAS-CONF-2021-001

Same data compared to hydro with *Trento* initial conditions

Correlation between "radial" (mean p_T) and "transverse" evolution of the system (v_n harmonics)

$$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}}} \sqrt{c_k}}$$

 $\beta_2 > 0$ Prolate $\beta_2 < 0$ Oblate - RHIC - Au+Au ($\beta_2 \approx -0.13$), U+U ($\beta_2 \approx 0.3$) - LHC - Pb+Pb ($\beta_2 \approx 0$), Xe+Xe ($\beta_2 \approx 0.16$)

ATLAS-CONF-2021-001

Same data compared to hydro with *Trento initial conditions + hydro ...*

Correlation between "radial" (mean p_T) and "transverse" evolution of the system (v_n harmonics)

$$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}}} \sqrt{c_k}}$$

 $\beta_2 > 0$ Prolate $\beta_2 < 0$ Oblate − RHIC - Au+Au ($β_2 \approx -0.13$), U+U ($β_2 \approx 0.3$) - LHC - Pb+Pb ($β_2 ≈ 0$), Xe+Xe ($β_2 ≈ 0.16$)

ATLAS-CONF-2021-001

Heavy flavour (charm and bottom) quarks flow and suppression in Pb+Pb

Simultaneous measurement of R_{AA} and v₂ of muons from charm and beauty decays test the balance between energy loss mechanism and the QGP expansion

- At lower muon p⊤, clear mass effect in overall suppression and flow magnitude
- Similar level of suppression at higher p_T, while still significantly different flow

Christopher McGinn Sun, 14:50

Flow in small systems

How the flow in pp collision is affected by hard processes? Can we constrain the geometry of the pp collision?

Flow in pp with jet particle rejection

Charged particles close ($|\Delta \eta| < 1$) to the jet (track jet with $p_T > 10$ GeV) removed from the 2PC (both trigger and associated)

Flow in pp with jet particle rejection

Charged particles close ($|\Delta \eta| < 1$) to the jet (track jet with $p_T > 10$ GeV) removed from the 2PC (both trigger and associated)

Flow in pp with jet particle rejection

The v_2 integrated over the 0.5–5 GeV p_T range decreases only marginally (2-5%) 40 when applying jet particle rejection $N_{\rm ch}^{\rm rec, corr}$

Flow in UPC

UPC γ +Pb (ρ +Pb)

- Looking in the class of high multiplicity photonuclear collision
- Good separation from peripheral Pb+Pb due to the characteristic asymmetric topology

smaller than p+Pb and pp

18

Heavy flavour flow in pp

v₂ of muons from charm decays consistent with light hadrons flow

v₂ of muons from beauty decays consistent with 0

Heavy flavour flow in pp

v₂ of muons from charm decays consistent with light hadrons flow

decays consistent with 0

arXiv:2109.00411

Minimal if any modification to yield of muons from charm decays in pp

Summary

Lots of results based on the Run2 data

Full list of ATLAS heavy ion results Good prospects for the future:

	Year	Systems, $\sqrt{s_{NN}}$	Time	$L_{\rm int}$
Run 3	2021	Pb–Pb 5.5 TeV	3 weeks	$2.3 {\rm nb}^{-1}$
		pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (AT
	2022	Pb–Pb 5.5 TeV	5 weeks	$3.9 { m nb^{-1}}$
		O–O, p–O	1 week	$500~\mu\mathrm{b}^{-1}$ and $200~\mu\mathrm{b}^{-1}$
	2023	p–Pb 8.8 TeV	3 weeks	0.6 pb ⁻¹ (ATLAS, CMS), 0.3 p
Aun 4	7	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (
	2027	Pb–Pb 5.5 TeV	5 weeks	$3.8 {\rm nb}^{-1}$
		pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (AT
	2028	p–Pb 8.8 TeV	3 weeks	0.6 pb ⁻¹ (ATLAS, CMS), 0.3 p
		pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb ⁻¹ (
	2029	Pb–Pb 5.5 TeV	4 weeks	$3 \mathrm{nb}^{-1}$
	Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal s
		pp reference	1 week	

From HL/HE-LHC Physics Workshop Working Group 5 report

Run 1 L_{int} 0.17 nb-1 Run 2 L_{int} 2.2 nb-1 **Run 3 & 4 L**int ~ **13 nb-1** !!!

Possibility of using lighter ion species (test of O-O configuration in Run 3).

Nucleon nucleon luminosity equivalent to: **Pb-Pb** @ L_{int} **75-250** nb⁻¹.

Backup

Centrality in Heavy Ion collisions

2015 Pb+Pb data

Centrality intervals and their corresponding geometric quantities

Centrality [%]	$\langle N_{\rm part} \rangle$	$\langle T_{\rm AA} \rangle [{\rm mb}^{-1}]$
0–2%	399.0 ± 1.6	28.30 ± 0.25
2–4%	380.2 ± 2.0	25.47 ± 0.21
4–6%	358.9 ± 2.4	23.07 ± 0.21
6-8%	338.1 ± 2.7	20.93 ± 0.20
8–10%	317.8 ± 2.9	18.99 ± 0.19
10–15%	285.2 ± 2.9	16.08 ± 0.18
15–20%	242.9 ± 2.9	12.59 ± 0.17

$\langle N_{\rm part} \rangle$	$\langle T_{\rm AA} \rangle [{\rm mb}^{-1}$
205.6 ± 2.9	9.77 ± 0.18
172.8 ± 2.8	7.50 ± 0.17
131.4 ± 2.6	4.95 ± 0.15
87.0 ± 2.4	2.63 ± 0.11
53.9 ± 2.0	1.28 ± 0.07
23.0 ± 1.3	0.39 ± 0.03
4.80 ± 0.36	0.052 ± 0.00
114.0 ± 1.1	5.61 ± 0.06
	$\langle N_{part} \rangle$ 205.6 ± 2.9 172.8 ± 2.8 131.4 ± 2.6 87.0 ± 2.4 53.9 ± 2.0 23.0 ± 1.3 4.80 ± 0.36 114.0 ± 1.1

Flow decorrelation

Phys. Rev. Lett. 126 (2021) 12230

Flow decorrelation and flow harmonics ratios all harmonics

Phys. Rev. Lett. 126 (2021) 12230

Heavy flavor muon versus heavy flavor meson flow

Muons from heavy flavour decay

Phys. Rev. Lett. 124 (2020) 082301

Events with and without track jet of certain threshold in pp **ATLAS-CONF-2020-018** Track Events/1 Charged Track 10⁵ 10⁴ 10⁴ 10³ 107 ATLAS Preliminary **ATLAS** Preliminary $pp \sqrt{s}=13 \text{ TeV}, 64 \text{ nb}^{-1}$ $pp \sqrt{s}=13 \text{ TeV}, 64 \text{ nb}^{-1}$ 10⁶ 10⁶ Charged Jet $p_{\tau} > 8 \text{ GeV}$ Jet $p_{\tau} > 6 \text{ GeV}$ 10⁵ Events/10⁴ 10³ 10³

29

Flow in pp with jet particle rejection - p_T dependence

Flow in pp with jet particle rejection - jet threshold

Flow in UPC - details of the CGC calculations

 Q_{s^2} - saturation scale B_p^2 - controls the transverse area of the interaction

Flow in UPC - pure photonuclear MC

Without (left) and with (right) non-flow subtraction

ATLAS detector

And forward detectors located far far away from the interaction point ZDC (140m), AFP & ALFA (~240m)

