Hard Probes of Heavy Ion Collisions with ATLAS

Christopher McGinn PANIC 2021, Portugal 5 September 2021

University Colorado Boulder

Producing Quark Gluon Plasma

Still via Ann.Rev.Nucl.68 (2018)

Full video via Yen-jie Lee, Wit Busza, and Andre Yoon

1. Lorentz-contracted nuclei inbound

- 2. Initial collision; Hard-probes formed here
- 3. After some formation time, Quark Gluon Plasma (QGP)
- 4. After some longer time, freezeout and hadronization

Producing Quark Gluon Plasma

Still via Ann.Rev.Nucl.68 (2018)

Full video via Yen-jie Lee, Wit Busza, and Andre Yoon

1. Lorentz-contracted nuclei inbound

- 2. Initial collision; Hard-probes formed here
- 3. After some formation time, Quark Gluon Plasma (QGP)
- 4. After some longer time, freezeout and hadronization

Producing Quark Gluon Plasma

Still via Ann.Rev.Nucl.68 (2018)

Full video via Yen-jie Lee, Wit Busza, and Andre Yoon

1. Lorentz-contracted nuclei inbound

2. Initial collision; Hard-probes formed here

3. After some formation time, Quark Gluon Plasma (QGP)

4. After some longer time, freezeout and hadronization

Jets in QGP

ATLAS PRL 105 (2010) 252303 Run[.] $(1/N_{evt}) dN/dA_{J}$ Event[.] s_{NN}=2.76 TeV 0-10% 2010-11-12 Date: 50-] E_T [GeV] 04-11-44 CET ATLAS Time[.] Pb+Pb 40 Calorimeter Towers =1.7 μb⁻ 30 Pb+Pb Data 20 Op+p Data HIJING+PYTHIA 10-0.2 04 -3 -5 -4 -3 -2 -1 0 1 $(p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2}) \rightarrow$ A,

- Observe significant modification to dijet asymmetry (A1)!
- Interpret as jet energy 'lost' to medium interactions
 - For latest ATLAS dijet asymmetry measurements, see here

169045

1914004

- Not a comprehensive view of the ATLAS HI jet program!
 All ATLAS HI results (including jets) can be found berged.
- All ATLAS HI results (including jets) can be found here

ATLAS Detector and Data

Via CDS

p_p p+p collected in 2017 (2015) 260 pb⁻¹ (1.16 pb⁻¹) lumi.

Pb+Pb collected in 2018 (2015) 1.72 nb⁻¹ (246µb⁻¹) lumi.

- Jets are reconstructed w/ EMCal and HCal
- Charged particles via inner tracking detectors
- Centrality (nuclear overlap) is determined by FCal
- Z boson reconstructed w/ muon detectors and EMCal+track

Z-Tag w/ Jet Fragments (I)

Z-boson

- Initial scattering proxy
- Study charged particles opposite the Z
 - These are produced by the jet
- Right: Charged particles produced in hemisphere opposite Z in Pb+Pb, p+p

Z-Tag w/ Jet Fragments (II)

- How does energy loss modify jet constituents?
- Observe suppression of high- p_T particles
- Excess of low p_T particles
- Medium interactions attenuate+redistribute

Z+hadrons Theory Comparison

- Does a jet in medium leave a wake?
- Check in Hybrid model jet quenching theory with strong-coupling
- Hybrid model does not describe low-p_T excess in data w/o such a backreaction

Jet-Geometry Correlations (I)

- Simple counting of jets in-and-out-of-plane
 - We observe more jets in the final state in-plane!

Jet-Geometry Correlations (II)

Out-Plane

v_2 : 2nd Fourier Coef. A(1 + 2 v_n cos(n($\Psi_n - \phi$)))

Significant v₂ observed, with expected centrality dependent trend
 Implies a path-length dependence in energy loss!

Cross-experiment Comparison

v_2 : 2nd Fourier Coef. A(1 + 2 v_n cos(n($\Psi_n - \phi$)))

- Good agreement in semi-central (20-40%)
- Modest tension in 0-10% w/ ALICE
 - ATLAS 5.02 TeV result consistent with 2.76 TeV

Heavy Flavor Study (I)

- Does mass (c/b quark) modify medium interactions?
- Measure production of via muon decay channel
 - Produce spectra above, binned in centrality
- Construct scaled Pb+Pb ratios w/ p+p as:

 $R_{\mathbf{A}\mathbf{A}} = rac{N_{\mathbf{A}\mathbf{A}}/N_{\mathbf{evt}}}{\langle T_{\mathbf{A}\mathbf{A}}
angle_{ imes \sigma^{pp}}}$

b.c

 $\overline{b}, \overline{c}$

Heavy Flavor Study (II)

- + We observe flat charm suppression across all $\ensuremath{\textbf{p}_{T}}$
- b-suppression is flat at high-p_T
 - Recovered partially at low-p_T
- Mass ordering to suppression?

Heavy Flavor Study (III)

- Double ratio of c/b suppression
 - Additional error cancellation
- + Simultaneously compare $\textbf{R}_{\textbf{A}\textbf{A}}$ and \textbf{v}_2
 - Greater constraint on theory
- For more on heavy flavor flow, see Dominik's talk

Conclusion

- Jets are an excellent probe for learning the properties of QCD matter
- Jet constituents are preferentially softer in Pb+Pb
- The path length of jet thru medium impacts suppression
- Heavy flavor reveals mass dependencies to medium interactions

Christopher McGinn

Jet-Geometry Correlations v₃

University of Colorado Boulder