

Measurement of D[±] meson production and total charm yield at midrapidity in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV with the STAR experiment

Jan Vanek, for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences

PANIC 2021

08.09.2021

PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) is the state of matter where quarks and gluons are no longer trapped inside colorless hadrons
- QGP is formed in relativistic heavy-ion collisions
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium

RELATIVISTIC HEAVY-ION COLLIDER

- Relativistic Heavy-Ion Collider (RHIC) is located in Brookhaven National Laboratory (BNL), Long Island, New York
 - RHIC is 3.8 km long with 6 interaction regions (IR)
 - STAR is located at 6'o clock IR and is the only running experiment at RHIC today
- RHIC is a very versatile collider:

RHIC energies, species combinations and luminosities (Run-1 to 20)

Jan Vanek, PANIC 2021

STAR: PRL 118, 212301, (2017)

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers (PXL1, PXL2), Strip detectors 2 outer layers (IST, SSD)
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

D[±] **MEASUREMENTS WITH THE HFT**

- Data used in this analysis are from 2014 and 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$
- Total of ca. 2.3B good minimum bias events after event selection
- The HFT allows direct topological reconstruction of D[±] mesons through their hadronic decay
 - $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$ $c\tau = (311.8 \pm 2.1) \, \mu m$ $BR = (8.98 \pm 0.28) \, \%$

F. Niecknig, B. Kubis: JHEP 1510, 142, (2015)

EVENT AND TRACK SELECTION, PID

• Event selection

 Position of primary vertex along the beam axis

Track selection

- Low p_T cut suppression of combinatorial background from low-p_T particles
- $|\eta| < 1$ detector acceptance
- Minimum number of hits on each track in the TPC – good track quality
- At least three hits in HFT, one in PXL1, one in PXL2 and at least one in IST or SSD

Particle identification (PID)

- TPC energy loss of charged particles in the TPC gas
- TOF velocity of the charged particles

Topological selection criteria

- Possible only with use of the HFT
- Constrain topology of the reconstructed secondary vertex
- Suppress combinatorial background
- Optimized using multivariate analysis package TMVA

Jan Vanek, PANIC 2021

EVENT AND TRACK SELECTION, PID

Event selection

 Position of primary vertex along the beam axis

Track selection

- Low p_T cut suppression of combinatorial background from low-p_T particles
- $|\eta| < 1$ detector acceptance
- Minimum number of hits on each track in the TPC – good track quality
- At least three hits in HFT, one in PXL1, one in PXL2 and at least one in IST or SSD

Particle identification (PID)

- TPC energy loss of charged particles in the TPC gas
- TOF velocity of the charged particles

Topological selection criteria

- Possible only with use of the HFT
- Constrain topology of the reconstructed secondary vertex
- Suppress combinatorial background
- Optimized using multivariate analysis package TMVA

STAR

D[±] **RAW YIELD EXTRACTION**

- Raw yields extracted from invariant mass spectra of Kππ triplets
 - Significant background suppression with TMVA optimization of the topological selection criteria
 - Improved signal significance, especially at low- $p_{\rm T}$

D[±] **INVARIANT SPECTRUM**

STAR

Invariant yield is calculated according to:

$$\frac{\mathrm{d}^2 N}{2\pi p_{\mathrm{T}} \,\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = \frac{Y_{\mathrm{raw}}}{2 \,\pi \, N_{\mathrm{evt}} \,BR \, p_{\mathrm{T}} \Delta p_{\mathrm{T}} \Delta y \,\varepsilon(p_{\mathrm{T}})}$$

- $Y_{\text{raw}} = \text{raw yield}, N_{\text{evt}} = \text{number of events}, BR = \text{branching ratio}, \\ \varepsilon(p_{\text{T}}) = \text{total } D^{\pm} \text{ reconstruction efficiency}$
- Collision centrality classes: 0-10%, 10-40%, 40-80%
 - Determined from Glauber model simulation matched to charged track multiplicity in TPC

D[±] **INVARIANT SPECTRUM**

- Invariant spectra of D^{\pm} and D^{0} mesons measured in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$
- Spectra are fitted by Levy function
- The D[±] results help to constrain the total open charm cross section and for better understanding of charm quark hadrochemistry in Au+Au collisions

D[±] NUCLEAR MODIFICATION FACTOR

Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$

- Similar suppression and centrality dependence for D[±] and D⁰
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium

p+p reference (STAR): Phys. Rev. D 86, 072013, (2012)

D⁰ (STAR): Phys. Rev. C 99, 034908, (2019).

D[±]/D⁰ YIELD RATIO

- The D[±]/D⁰ yield ratio in Au+Au collisions is compared to that from MC simulation of p+p collisions (PYTHIA 8)
 - Good agreement in all Au+Au centrality classes
- No modification of the D[±]/D⁰ yield ratio compared to PYTHIA

TOTAL CHARM PRODUCTION CROSS SECTION STAR

- Total charm production cross section per binary nucleon-nucleon collision in Au+Au extracted from the measurements of opencharm hadrons
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open –charm hadron species in Au+Au compared to p+p

Coll. system	Hadron	${f d}\sigma_{_{ m NN}}/{f d}y$ [µb]
Au+Au at 200 GeV Centrality: 10-40%	D^0	$41\pm1\pm5$
	D^{\pm}	$18 \pm 1 \pm 3$
	D _s	$15 \pm 1 \pm 5$
	\wedge_{c}	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	130 ± 30 ± 26

*The $\Lambda_{\rm c}$ cross section is derived using the $\Lambda_{\rm c}/D^0$ yield ratio

Jan Vanek, PANIC 2021

D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. Lett. 113, 142301 (2014), erratum: Phys. Rev. Lett. 121, 229901 (2018). p+p (STAR): Phys. Rev. D 86 072013, (2012)

TOTAL CHARM PRODUCTION CROSS SECTION STAR

- Total charm production cross section per binary nucleon-nucleon collision in Au+Au extracted from the measurements of opencharm hadrons
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open –charm hadron species in Au+Au compared to p+p

Coll. system	Hadron	${ m d}\sigma_{_{ m NN}}/{ m d}y$ [µb]
Au+Au at 200 GeV Centrality: 10-40%	D^0	$41\pm1\pm5$
	D^{\pm}	$18 \pm 1 \pm 3$
	D _s	$15 \pm 1 \pm 5$
	\wedge_{c}	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	130 ± 30 ± 26

*The $\Lambda_{\rm c}$ cross section is derived using the $\Lambda_{\rm c}/D^0$ yield ratio

Jan Vanek, PANIC 2021

D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. Lett. 113, 142301 (2014), erratum: Phys. Rev. Lett. 121, 229901 (2018). p+p (STAR): Phys. Rev. D 86 072013, (2012)

CONCLUSION

- STAR has extensively studied production of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV utilizing the HFT
- The HFT allows direct topological reconstruction of hadronic decays of open-charm hadrons
- D[±] invariant yields measured for three centrality classes of Au+Au collisions
 - 0-10%, 10-40%, 40-80%
- High $p_T D^{\pm}$ mesons suppressed in central Au+Au cillisions
 - Charm quarks interact strongly with the QGP
- D[±]/D⁰ yield ratio measured in Au+Au collisions agrees with PYTHIA 8 calculation
 - No modification of the ratio in Au+Au with respect to p+p collisions
- Total charm quark production cross section per binary collision measured in Au+Au collisions is consistent with that measured in p+p collisions

THANK YOU FOR ATTENTION

Jan Vanek, PANIC 2021