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Propose and discuss a framework that can
provide a first principles effective
description of minimum bias events

Minimum bias: experimentally, some minimal trigger, typically
some forward calorimeter activity

Soft QCD, where strong nature of interactions dominate. Ergodic
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Reasons to seek first principles approach

EFT is a powerful symmetry based approach

pp or AA to N hadrons has some S-matrix element, that has to obey certain
symmetries

Connections with bootstrap

Understanding of strongly coupled theories from a bootstrap approach, recently
been applied to QFT, i.e. to the S-matrix

Starting with: M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, 16, *17. More recently e.g. L. Cordova and P. Vieira, ’18; D. Mazac and M. Paulos ’18,’19; Cordova, He,
Kruczenski, Vieira, ’19; Karateev, Kuhn, Penedones ’19; Correia, Sever, Zhiboedov, *20; Homrich, Penedones, Toledo, van Rees, Vieira, ’20 ...

Those are 2 to 2. This is 2 to N>>1; shortly see how “large N” helps
(This is a novel large N=multiplicity; it is not number of colours a la 't Hooft)

Equal footing

Treat both small and large systems, at both low and high energy, all within
the same framework.

Potential to aid in elucidation of nature of small scale (p p collision) collective
phenomena in QCD; jet quenching
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Treat both small and large systems, at both low and high energy, all
within the same framework.

What will be addressed: what will not

Assume that events are binned in multiplicity, N

I.e. Not attempt a description of fluctuations in multiplicity

Therefore, can capture how normalized distributions (or, better yet,
power spectra), binned in N, change as a function of N, and as a
function of Q

We work at fixed Q, and take the large N limit, meaning we do not
consider a scaling of Q and N such that Q/N (c.f. 't Hooft coupling)
remains finite. (Although this could be interesting)
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Power counting and symmetries for pp/AA min bias

. The beam is a small angular’ region outside the detection apparatus and we restrict our
description of the event to far from the beam region, where detected particle pseudora-
pidity satisfies |n| ~ 1 < Nmax-

. We assume that the mass of the particles is irrelevant and so detected particle transverse
momentum p | is parametrically larger than the QCD scale or pion mass, p| > m..

. The momentum lost down the beam region is an order-1 fraction of the center-of-mass

energy ().

. The number of detected particles N for which their pseudorapidity |n| < Nmax is large:
N > 1.

. We assume that the mean transverse momentum of the detected particles is representa-
tive of all particles’ momenta and so the mean and the root mean square momenta are

comparable: (p ) ~ 1/(p?).

. O(2) rotation and reflection symmetry about the beam,
. reflection of the beam n — —n

. SNy permutation symmetry in all NV detected particles,

. translation symmetry in pseudorapidity, n — n + An.

& finally, only measure momentum
(no species; but could be included)



Effective matrix element
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Effective matrix element
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Integrate out
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Effective matrix element
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Function (assumed analytic and finite) of the
available energy for observed particles



Expansion of matrix element
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Expansion of matrix element
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In powers of 1/N

Ergodicity and power counting

pL ~ Q/N
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Expansion of matrix element
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Fixing the function f to give flat-in-rapidity

Q Q N N N
o= / dk+/ dk‘/ f(kTk™) on(p1,-.-,pN) O(k™ — Zpuem) O(k™ — Zpue_m) 5(2)(Zﬁu)
0 0 LIPS(NV) i=1 i=1 i=1

4 ——Sp 71—
: Pseudorapidity Distribution ;
8T + CMS+TOTEM Data -
—— Smeared Phase Space -
T TTTeelT  mmeee- Flat Phase Space ]
LY 8 TeV pp
ol )
515 | 5
5F :
y) SR s :
0 1 7




Fixing the function f to give flat-in-rapidity
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The pred iCtionS i nCI Ude (From power counting and symmetries)

® Inthe NV — oo limit, the symmetries of min bias events and central
limit theorem require the matrix element is exclusively a function of
the total energy of the observed final state particles

@® The distribution of particle transverse momentum is universal, and
depends on a single parameter, with fractional dispersion relation

® By a positivity condition, all azimuthal correlations vanish as N — oo
at fixed collision energy

® Scaling and factorisation of long-distance pairwise particle pseudo-
rapidity correlations as N — oo (relevant for the pp ‘ridge’)
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Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a

Bessel function . Y , N
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The function f is now fixed, no wiggle-room
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Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a
Bessel function -
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Transverse momentum distribution

The distribution on unsmeared phase space can be shown to be a
Bessel function
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Conclusions

@® Constructed an effective description of min bias, based on power
counting and symmetry

® Framework predicts features, particularly in the N — oo limit, that
are borne out in collider data

® Future directions include detailed analysis, in particular away from

N — oo, and comparison with data on small system collective
behaviour, jet quenching

® Not presented here, but description works for other colliders:
electron-hadron, and e+ e-, by accounting for different symmetries

® Underlying event, with different symmetries again, could be
interesting to study by a similar approach
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Lorentz invariant phase space is a
Stlefel Manlfold
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Flat phase space to flat rapidity
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