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Deep Learning (DL) 
Classification of Quenched Jets 

QUENCHED JETS CLASSIFIER 

Can DL distinguish between strongly modified 
jets from unmodified ones? 

To obtain pure samples of modified jets from 
where the jet-QGP interaction may be studied

EXPLORING DIFFERENT DATA REPRESENTATIONS 

DL is a powerful and versatile tool that allows to 
exploit data at various formats 

Allows to train intelligent systems in data that was not 
considered before

INTERPRETATION 
What have the DL models learnt as the difference between quenched and not quenched jets?
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Data Simulation
▪ Jet produced back-to-back with Z boson,  TeV 

▪ JEWEL 2.2.0 MC with medium induced effects at parton-shower level (excluding medium recoils) 
▪ ,   GeV,   GeV  
▪ Anti-kt jet with R=0.5,   GeV, ,  

sNN = 5.02

Z → μμ pT,Z > 90 mZ ∈ [75,105]
pT, jet > 30 |ηjet | < 1.0 ΔϕZ, jet > 7π /8
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Data Representations

▪ Calorimeter images, Lund plane coordinates and Tabular jet pT and number of constituents 
▪ Each carrying different implicit features of the substructure of quenched jets
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Jet images Convolutional Neural Networks (CNN)

▪ 2  grids centred in the jet axis with jet pT and n constituents 
▪ Unnormalised /Normalised  images: full jet info/relative fragmentation pattern 
▪ CNNs scan the images looking for successively detailed discriminant patterns

Δη, Δϕ
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Lund planes 
Recurrent Neural Networks (RNN)

▪   coordinates of the Cambridge/Aachen clustering sequence 
▪ RNNs are sensitive to causal ordering (eg. speech) and may exploit the C/A ordered sequence

(logkT, logΔR)
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Tabular data 
Dense Neural Networks (DNN)

▪ Baseline for the discriminant power of jet pT and n of constituents 
▪ To assess the gain with the jet substructure information implicit on Images and Lund planes 7



DL Training 
Hyperparameter optimization

▪ Data set split in train/validation/test 
in 1:1:1 proportion 

▪ Vacuum VS Medium samples 

▪ DL models implemented in Keras 

▪ Bayesian loop to optimise networks’ 
hyper parameter using Optuna
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DL models discriminants
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▪ Identification of strongly 
quenched jets with 
examples from a Medium 
sample which is not pure 

▪ Part of the network will 
learn the effects of jet 
quenching 

▪ Jet pT and n of constituents 
are important to the task 



DL models discriminants
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▪ RNNs and CNNs on 
unnormalised images 
outperform the DNN 
trained on jet pT and n 
constituents 

▪ We gain from the jet 
substructure patterns 
enclosed in the Lund plane 
and jet image 
representation 



DL discriminant, correlation with  xjZ =
pTj

pTZ
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DL interpretation
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▪ Selected vaccum-like sample 
follows Vaccum MC truth, 
i.e. models are able to 
identify vacuum jets 

▪ Selected medium-like 
spectra is suppressed wrt 
Medium MC truth, decision 
boundary does not follow 
Medium VS Vacuum 
simulation 



DL interpretation
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▪ Selected vaccum-like sample 
slightly displaced from 
Vaccum MC truth, i.e. 
models may identify jets 
from the Medium sample 
which didn’t interact 
strongly with QGP 

▪ Selected medium-like 
spectra enhances medium-

like features displacing   
towards smaller values 

xjZ



Conclusions

▪ Used DL flexibility to explore different representations of jets for building a classifier of 
quenched jets 

▪ Investigated the distribution of jet observables in vacuum- and medium-like samples 
selected with the DL quenching classifiers 

▪ Classifiers based on Lund plane coordinates and Jet images outperform discriminants 
from tabular data 
▪ These data formats encode additional information about jet fragmentation 
▪ RNNs and CNNs are able to capture it 
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