

Medium induced gluon spectrum in the Improved Opacity Expansion

5th of September 2021, PANIC Lisbon

based on arXiv: 2104.04661 with Y. Mehtar-Tani, A. Soto-Ontoso, K. Tywoniuk

João Barata

Jets in Heavy Ion Collisions

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Lumi section: 249	Jet 1, pt: 70.0 GeV
Jet 0, pt: 205.1 GeV	

Basic building blocks for pheno:

Easy to compute in the usual boosted kinematics

Induced radiation $\mathcal{O}(\alpha_s)$

Computable but far from being trivial

Complete numerical solutions are still actively studied

1006.2379 S. Caron-Huot, C. Gale 1810.08177 W. Ke, Y. Xu, S.A. Bass 1811.01591 X. Feal, R. Vazquez 2002.01517 C. Andrés, L. Apolinário, F. Dominguez

1

Jets in Heavy Ion Collisions

From an analytical perspective, one needs to make further approximations about the nature of the medium

Evolution dominated by multiple soft scatterings

Why is an analytical approach useful?

- Gain insight into the structure of the emission process
- e.g. jet substructure
- Find simpler functional forms for the spectrum

Evolution dominated by few hard scatterings

Important to understand how the medium affects jet observables in detail,

Consider the probability for a parton to acquire momentum k in-medium

$$\frac{\partial}{\partial L} \mathscr{P}(\mathbf{k}, L) = C_R \int_{\mathbf{q}} \gamma(\mathbf{k}, L) = C_R \int_{\mathbf{q}} \gamma(\mathbf$$

Typically, one goes to x-space

$$S(\mathbf{x},L) = e^{-\int_0^L ds \, v(\mathbf{x},s)} = e^{-v(\mathbf{x})L}$$

and then transforms back to k-space

$$\mathscr{P}(\mathbf{k}, L) = \int_{\mathbf{X}} S(\mathbf{x}, L) e^{-i\mathbf{k}\cdot\mathbf{x}}$$

When does $\mathscr{P}(\mathbf{k})$ admit a simple closed form?

(q) $\left[\mathscr{P}(\mathbf{k} - \mathbf{q}, L) - \mathscr{P}(\mathbf{k}, L) \right]$

Collision rate

$$v(\mathbf{x}) \equiv C_R \int_{\mathbf{q}} \left(1 - e^{i\mathbf{q}\cdot\mathbf{x}} \right) \gamma(\mathbf{q})$$

dipole cross section

Typically two models:

PRL 68, 1480 X.-N. Wang, M. Gyulassy

Gyulassy-Wang (GW) $\gamma^{\text{GW}}(\mathbf{q}) = \frac{g^4 n}{(\mathbf{q}^2 + \mu^2)^2}$

In the ultraviolet, both models detail a **Coulomb interaction**, implying

$$v^{\text{LP}}(\mathbf{x}) = \frac{\hat{q}_0}{4} \mathbf{x}^2 \log\left(\frac{1}{\mathbf{x}^2 \mu_*^2}\right) + \mathcal{O}(\mathbf{x}^4 \mu_*^2)$$

$$\mu_*^2 = \begin{cases} \frac{\mu^2}{4} e^{-1+2\gamma_E} & \text{for the GW model} \\ \frac{m_D^2}{4} e^{-2+2\gamma_E} & \text{for the HTL model} \end{cases}$$

<u>v mb</u> â₀

Medium details are hidden in the in-medium scattering rate $v(\mathbf{x}) \equiv C_R \left[(1 - e^{i\mathbf{q}\cdot\mathbf{x}}) \gamma(\mathbf{q}) \right]$

Hard Thermal-Loop (HTL) γ

$$^{\mathrm{HTL}}(\mathbf{q}) = \frac{g^2 m_D^2 T}{\mathbf{q}^2 \left(\mathbf{q}^2 + m_D^2\right)}$$

hep-ph/0204146 P. Aurenche, F. Gelis, H. Zaraket

In contrast with more standard prescription

$$\mu = m_D$$

0705.3439 M. Djordjevic, U. Heinz

Make further assumption on medium opac

$$S^{\text{LP}}(\boldsymbol{x}) = \exp\left[-rac{1}{4}Q_{s0}^2 \, \boldsymbol{x}^2 \, \lograc{1}{\boldsymbol{x}^2 \mu_*^2}
ight] + \mathcal{O}(\boldsymbol{x}^2 \mu_*^2)$$

In the dilute $\chi \ll 1$ approximation: \mathbf{k}^2

$$S^{ ext{LP}}(m{x})\Big|_{|m{x}|\ll 1/Q_{s0}} = 1 - rac{1}{4}Q_{s0}^2\,m{x}^2\,\lograc{1}{m{x}^2\mu_*^2} + \mathcal{O}\left(m{x}^4Q_{s0}^4
ight)$$

In the dense $\chi \gg 1$ approximation: $\mathbf{k}^2 \sim$

$$S^{\mathrm{LP}}(\boldsymbol{x}) = \exp\left[-rac{1}{4}Q_{s0}^2 \, \boldsymbol{x}^2 \, \log rac{Q^2}{\boldsymbol{x}^2 \mu_*^2}
ight] + \mathcal{O}(\boldsymbol{x}^2 \mu_*^2)$$

city
$$\chi \sim \frac{Q_{s0}^2 = \hat{q}_0 L}{\mu_*^2}$$

When does
$${\mathscr P}$$
 have a closed ${}^{\cdot}$

$$\mathscr{P}(\mathbf{k},L) = \int_{\mathbf{X}} S(\mathbf{x},L) e^{-i\mathbf{k}\cdot\mathbf{x}}$$

$$\sim \frac{1}{\mathbf{x}^2} \gg Q_{s0}^2$$

$$\mathscr{P}^{\text{SH}}(\mathbf{k},L) = \frac{1}{4}Q_{s0}^2 \,\overrightarrow{\nabla}_{\mathbf{k}}^2 \frac{4\pi}{\mathbf{k}^2} = 4\pi \frac{Q_{s0}^2}{\mathbf{k}^4}$$

$$\sim \frac{1}{\mathbf{x}^2} \le Q_{s0}^2$$

$$Q_s^2 = Q_{s0}^2 \log$$

$$\mathscr{P}^{\mathrm{MS}}(\mathbf{k},L) = \frac{4\pi}{Q_s^2} e^{-\frac{\mathbf{k}^2}{Q_s^2}}$$

1
$$v^{\text{LP}}(\mathbf{x}) = \frac{\hat{q}_0}{4} \mathbf{x}^2 \log\left(\frac{1}{\mathbf{x}^2 \mu_*^2}\right)$$

 $Q^2 = Q_s^2 = Q_{s0}^2$
2 $Q^2 \gg \mu_*^2$

6

In the IOE approximation:

$$\mathscr{P}^{\text{LP}}(\mathbf{k},L) = \sum_{n} \int_{\mathbf{x}} e^{-i\mathbf{x}\cdot\mathbf{k}} \frac{e^{-\frac{1}{4}\mathbf{x}^2 Q_s^2}}{MS} \frac{(-1)^n Q_{s0}^{2n}}{4^n n!} \mathbf{x}^{2n} \log^n \frac{1}{\mathbf{x}^2 Q^2} \equiv \mathscr{P}^{(0)} + \mathscr{P}^{(1)} + \mathscr{P}^{(2)} + \cdots$$
Hard pert. corrections

Truncating at first order we find the simple result :

$$\mathcal{P}^{(0)+(1)}(\mathbf{k},L) = \frac{4\pi}{Q_s^2} e^{-x} \left\{ 1 - \lambda \left(e^x - 2 + (1-x) \left(\operatorname{Ei}(x) - \log(4x) \right) \right) \right\}$$
MS

$$\mathcal{P}^{(1)}(\mathbf{k},L)\Big|_{\mathbf{k}^2 \ll Q_s^2} = \frac{4\pi\lambda}{Q_s^2}\log 4e^{1-\gamma_E}$$

$$MS \text{ (soft) } \times \lambda$$

When does \mathscr{P} have a closed form?

$$\lambda = \frac{\hat{q}_0}{\hat{q}} = \frac{1}{\log \frac{Q_s^2}{\mu_*^2}}$$

Expansion parameter in the soft sector

$$\mathscr{P}^{(1)}(\mathbf{k},L)\Big|_{\mathbf{k}^2 \gg Q_s^2} = 4\pi \frac{Q_{s0}^2}{\mathbf{k}^4}$$

SH

1903.00506 Y. Mehtar-Tani 2009.13667 with Y. Mehtar-Tani, A. Soto-Ontoso, K. Tywoniuk

Medium induced spectrum in the IOE

The medium gluon spectrum can be written as:

$$(2\pi)^{2}\omega \frac{\mathrm{d}I}{\mathrm{d}\omega \mathrm{d}^{2}\boldsymbol{k}} = \frac{2\bar{\alpha}\pi}{\omega^{2}} \operatorname{Re} \int_{0}^{\infty} \mathrm{d}t_{2} \,\mathrm{e}^{-\epsilon t_{2}} \int_{0}^{t_{2}} \mathrm{d}t_{1} \int_{\boldsymbol{x}} \,\mathrm{e}^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \,\mathcal{P}(\boldsymbol{x},\infty;t_{2}) \,\boldsymbol{\partial}_{\boldsymbol{x}}$$

broadening

Gluon energy and momentum

where the kernel satisfies

$$\left[i\partial_t + \frac{\partial^2}{2\omega^2} + iv(\mathbf{x})\right] \mathscr{K}(\mathbf{x}, t_2 | \mathbf{y}, t_1) = i\delta(\mathbf{x} - \mathbf{y})$$

Schrodinger equation with imaginary (dissipative) potential

The IOE requires a series expansion of both ${\mathscr P}$ and ${\mathscr K}$!

Medium induced spectrum in the traditional approaches

In the dilute $\chi \ll 1$ approximation: GLV/W

$$\mathcal{K}(\mathbf{x}, t_2 | \mathbf{y}, t_1) = \mathcal{K}_0(\mathbf{x}, t_2 | \mathbf{y}, t_1) - \int_{\mathbf{z}} \int_{t_1}^{t_2} ds \, \mathcal{K}_0(\mathbf{x}, t_2 | \mathbf{z}, s) v(\mathbf{z}, s) \mathcal{K}(\mathbf{z}, s | \mathbf{y}, t_1)$$
known exactly

 $v(\mathbf{x},s) \propto \hat{q}\mathbf{x}^2$ In the dense $\chi \gg 1$ approximation: BDMPS-Z/ASW

$$\mathscr{K}_{\text{HO}}(\mathbf{x}, t \,|\, \mathbf{y}, t_1) = \frac{\omega}{2\pi i S(t, t_1)} \exp\left[\frac{i\omega}{2S(t, t_1)} \left\{C(t_1, t) \,\mathbf{x}^2 + C(t, t_1) \,\mathbf{y}^2 - 2\mathbf{x} \cdot \mathbf{y}\right\}\right]$$

$$\left[\frac{d^2}{d^2t} + \Omega[t]\right] C(t, t_0) = 0, \quad C(t_0, t_0) = 1, \quad \partial_t C(t, t_0)_{t=t_0} = 0 \qquad \left[\frac{d^2}{d^2t} + \Omega[t]\right] C(t, t_0) = 0, \quad C(t_0, t_0) = 1, \quad \partial_t C(t, t_0)_{t=t_0} = 0$$

 $\left[\frac{d^2}{d^2t} + \Omega[t]\right] S(t, t_0) = 0, \quad S(t_0, t_0) = 0, \quad \partial_t S(t, t_0)_{t=t_0} = 1 \qquad \Omega(t) = \frac{1-i}{2} \sqrt{\frac{\hat{q}(t)}{\omega}}$

Medium induced spectrum in the IOE

To first order in the IOE on can write the spectrum as

 $\frac{\mathrm{d}I}{\mathrm{d}\omega\mathrm{d}^{2}\boldsymbol{k}} = \frac{\mathrm{d}I^{\mathrm{I}}}{\mathrm{d}\omega\mathrm{d}}$

The Leading Order term is simply the BDMPS-Z result

$$(2\pi)^{2}\omega \frac{\mathrm{d}I^{\mathrm{LO}}}{\mathrm{d}\omega \mathrm{d}^{2}\boldsymbol{k}} = \frac{2\bar{\alpha}\pi}{\omega^{2}} \mathrm{Re} \int_{0}^{\infty} \mathrm{d}t_{2} \,\mathrm{e}^{-\epsilon t_{2}} \int_{0}^{t_{2}} \mathrm{d}t_{1} \int_{\boldsymbol{x}} \,\mathrm{e}^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \quad \times \mathcal{P}^{\mathrm{LO}}(\boldsymbol{x},\infty;t_{2})\boldsymbol{\partial}_{\boldsymbol{x}} \cdot \boldsymbol{\partial}_{\boldsymbol{y}} \mathcal{K}^{\mathrm{LO}}(\boldsymbol{x},t_{2};\boldsymbol{y},t_{1})_{\boldsymbol{y}=0} - \frac{8\bar{\alpha}\pi}{k_{\perp}^{2}}$$

while the first correction reads

$$(2\pi)^2 \omega \frac{\mathrm{d}I^{\mathrm{NLO}}}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{2\bar{\alpha}\pi}{\omega^2} \mathrm{Re} \int_0^\infty \mathrm{d}t_2 \,\mathrm{e}^{-\epsilon t_2} \int_0^{t_2} \mathrm{d}t_1 \int_{\boldsymbol{x}} \,\mathrm{e}^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \quad \times \Big[\mathcal{P}^{\mathrm{LO}}(\boldsymbol{k}) - \mathcal{P}^{\mathrm{LO}}(\boldsymbol{k}) \Big]$$

One can simplify these expressions to forms similar to the BDMPS-Z result !

$$rac{\mathrm{d} I^{\mathrm{NLO}}}{\mathrm{d}^2 oldsymbol{k}} + rac{\mathrm{d} I^{\mathrm{NLO}}}{\mathrm{d} \omega \mathrm{d}^2 oldsymbol{k}} + \mathcal{O}(\delta v^2) \, .$$

$\mathscr{K}_{HO} = \mathscr{K}_{LO}$ in what follows

 $egin{aligned} & (oldsymbol{x},\infty;t_2)oldsymbol{\partial}_{oldsymbol{x}}\cdotoldsymbol{\partial}_{oldsymbol{y}}\mathcal{K}^{ ext{NLO}}(oldsymbol{x},t_2;oldsymbol{y},t_1)_{oldsymbol{y}=0} & +\mathcal{P}^{ ext{NLO}}(oldsymbol{x},\infty;t_2)oldsymbol{\partial}_{oldsymbol{x}}\cdotoldsymbol{\partial}_{oldsymbol{y}}\mathcal{K}^{ ext{LO}}(oldsymbol{x},t_2;oldsymbol{y},t_1)_{oldsymbol{y}=0} & +\mathcal{P}^{ ext{NLO}}(oldsymbol{x},\infty;t_2)oldsymbol{\partial}_{oldsymbol{x}}\cdotoldsymbol{\partial}_{oldsymbol{y}}\mathcal{K}^{ ext{NLO}}(oldsymbol{x},t_2;oldsymbol{y},t_2)_{oldsymbol{y}=0} & +\mathcal$

11

Medium induced spectrum in the IOE: asymptotics

The IOE allows for a simple treatment of the spectrum in the asymptotic regions

In the Multiple Soft region where $\omega \ll \omega_c$ and $t_f \ll L$

A simple example :

In the Single Hard region where $\omega_c \ll \omega$ and $k_\perp^2 \gg \hat{q}L$

Generic property of the IOE Cancellation with no constraint on Q

some relevant discussion in 1209.4585, J.-P. Blaizot, F. Dominguez, E. Iancu, Y. Mehtar-Tani $(2\pi)^2 \omega \frac{\mathrm{d}I_{\mathrm{in-out}}^{\mathrm{NLO}}}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} \approx \left((2\pi)^2 \omega \frac{\mathrm{d}I_{\mathrm{in-out}}^{\mathrm{LO}}}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} \right) \, \frac{\hat{q}_0}{\hat{q}} \left(0.26(5) + \frac{1}{4} \log \frac{Q_r^2}{\sqrt{\hat{q}\omega}} \right)$ Enters redefinition of transport parameter IR dependence; must be absent from NLO term ! **Exact / GLV :** $(2\pi)^2 \omega \frac{\mathrm{d}I^{\mathrm{GLV}}}{\mathrm{d}\omega \mathrm{d}^2 \boldsymbol{k}} = \frac{8\bar{\alpha}\pi\hat{q}_0 L}{k_{\perp}^4} \left(3\gamma_E - 4 + \log\left(\frac{k_{\perp}^2}{4\mu_*^2}\right) + \log\left(\frac{k_{\perp}^2 L}{2\omega}\right)\right)$ Coulomb form $\frac{8\bar{\alpha}\pi\hat{q}_0L}{k_\perp^4}\log\frac{Q_b^2}{\mu_*^2}$ $\frac{8\pi\bar{\alpha}\hat{q}_{0}L}{k_{\perp}^{4}}\left[3\gamma_{E}-4+\log\left(\frac{k_{\perp}^{2}}{4Q_{b}^{2}}\right)+\log\left(\frac{k_{\perp}^{2}L}{2\omega}\right)\right]$

Medium induced spectrum in the IOE: numerical example

For the integrated spectrum, the expansion recovers the correct high energy tail

Medium induced spectrum in the IOE: numerical example

For the integrated spectrum, the expansion recovers the correct high energy tail

Conclusions and Outlook

The final expressions are of the same "complexity" as the BDMPS-Z result

the appropriate kinematical region

Immediate numerical application in LHC-inspire setting reveals the IOE can be an interesting tool for pheno; e.g. jet substructure

I have shown that the IOE can be applied to compute the fully differential gluon spectrum under the usual approximations

One can analytically check that the IOE recovers the GLV result in

