

Charm production and hadronisation in proton–proton, proton–Pb and Pb–Pb collisions with ALICE at the LHC

A. Rossi (Padua INFN) on behalf of the ALICE Collaboration

5 - 10 September 2021

Physics motivation

Heavy Quarks (charm and beauty) are produced only in hard-scattering processes with cross section calculable with pQCD

 \rightarrow "perturbative" probes of transition from quarks to hadrons in all collision systems \rightarrow measurement of cross sections and relative abundances of charm-hadron species provides a test for models incorporating (semi)dynamical description of hadronisation or based on a statistical approach

Main hadronisation model categories (in a simplified scheme)

2

Mass (GeV)

Factorisation: a very successful framework for HF mesons!

Prompt and non-prompt D mesons (including D_s^+) follow expectations... **does it hold for baryons?** Up to what extent fragmentation functions tuned on e^+e^- can be effective in pp or heavy-ion collisions? ₃

ALICE apparatus

Inner Tracking System tracking and vertexing

Data samples

 $\begin{array}{ll} (\underline{\text{min. bias trigger}}) \\ pp \ 13 \ \text{TeV} & \sim \ 32 \ \text{nb}^{-1} \\ pp \ 7 \ \text{TeV} & \sim \ 6 \ \text{nb}^{-1} \\ pp \ 5 \ \text{TeV} & \sim \ 19 \ \text{nb}^{-1} \\ p-\text{Pb} \ 5.02 \ \text{TeV} & \sim \ 292 \ \mu \text{b}^{-1} \\ Pb-\text{Pb} \ 5.02 \ \text{TeV} & \sim \ 114 \ \mu \text{b}^{-1} \ (0-10\%) \end{array}$

Decay channels $D^0 \rightarrow K^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^+_s \rightarrow \phi(\rightarrow K^- K^+) \pi^+$ $D^{*+}_s \rightarrow D^0 \pi^+$ $\Lambda^+_c \rightarrow p K^- \pi^+, \Lambda^+_c \rightarrow p K^0_s$

 $\Xi_c^0 \rightarrow \Xi^- \pi^+$, $\Xi_c^0 \rightarrow \Xi^- e^+ \nu_e$

 $\Sigma_c^{0,++} \rightarrow \Lambda_c^+ \pi^{-,+}$

 $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

 $\Omega_c^0 \rightarrow \Omega^- \pi^+$

Several arrows in the quiver

		1
$D^{0,+}$	Particle	Mass (GeV/c ²)
	D ⁰	1.865
	D^+	1.870
	D _s +	1.968
	Λ_{c}^{+}	2.286
	$\Sigma_{c}^{0,++}$	2.454
	Ξ _c ⁰	2.470
	Ξ_{c}^{+}	2.468
	$\mathbf{\Omega}_{c}^{0}$	2.695
(cū,cd) (cs)		

$Λ_c^+$ cross section in pp and p-Pb collisions at $\sqrt{s_{NN}}$ = 5 TeV

 Λ_c^+ production significantly underestimated by pQCD-based models

GM-VFNS: PRD 101 (2020) 114021 POWHEG: JHEP 09 (2007) 126 PYTHIA6: JHEP 05 (2006) 026 CT14 NLO: Phys. Rev. D 93, 033006 (2016) **6**

Λ_c^+/D^0 ratio in pp collisions at 5 TeV

Λ_{c}^{+}/D^{0} ratio in pp collisions at 5 TeV

Default PYTHIA8 (Monash, EPJC 74 (2014) 3024), standard Lund string fragmentation

Hadronisation of different MPI products largely independent

HERWIG7 (EPJC 58 (2008) 639-707), cluster hadronisation

Undershoot data by factor about 5 and do not catch p_{τ} shape

ALI-PUB-488244

arXiv:2011.06079 arXiv:2011.06078

Λ_{c}^{+}/D^{0} ratio in pp collisions at 5 TeV

Data described by:

PYTHIA8 with String Formation beyond Leading Colour

approximation (JHEP 1508 (2015) 003).

More complete and realistic (=closer to QCD) colour-reconnection (CR) scheme

- "...between which partons do confining potentials arise?"

Junction reconnection topologies \rightarrow enhance baryons.

ALI-PUB-488248

arXiv:2011.06079 arXiv:2011.06078

Λ_c^+/D^0 ratio in pp collisions at 5 TeV

ALI-PUB-488248

arXiv:2011.06079 arXiv:2011.06078 Data described by:

PYTHIA8 with String Formation beyond Leading Colour

Catania model: coalescence + "vacuum" fragmentation (arxiv.org 2012.12001)

Expanding system of thermalised light quarks and gluons "Sudden" (fixed temperature) coalescence Coalescence probability from Wigner formalism Charm quarks that do not coalesce, fragment

Λ_c^+/D^0 ratio in pp collisions at 5 TeV

Data described by:

PYTHIA8 with String Formation beyond Leading Colour

Catania model: coalescence + "vacuum" fragmentation

SH+PDG/RQM, PLB 795 117-121 (2019):

Hadron abundances based on statistical hadronisation model + (RQM) large feed-down from augmented set of charm-baryon states

ALI-PUB-488248

arXiv:2011.06079 arXiv:2011.06078

Λ_c^+/D^0 ratio in pp collisions at 5 TeV and 13 TeV

arxiv 2106.08278

No significant dependence on collision energy

 p_{τ} >12 GeV/c: approaching e⁺e⁻ values?

QCM = coalescence model based on statistical weights + "equal quark-velocity" (EPJC 78, 2018 4, 344)

Λ_c^+/D^0 evolution with event activity: pp

 Λ_{c}^{+}/D^{0} increases with particle multiplicity at midrapidity

Λ_c^+/D^0 evolution with event activity: pp

 Λ_c^+/D^0 increases with particle multiplicity at midrapidity

Trend expected by **PYTHIA8 with String Formation beyond** Leading Colour (Mode 2) \rightarrow confirms importance of Colour Reconnection in rich partonic environments

 \rightarrow interplay of Color Reconnection (CR) and Multiple Parton Interactions

Do we have a smooth evolution with multiplicity from $(e^+e^- to) pp to AA?$

Λ_c^+/D^0 evolution with event activity: from pp to Pb-Pb

- Λ_{c}^{+}/D^{0} in Pb-Pb collisions higher than in pp collisions at intermediate p_{T}
- Similar in 0-10% and 30-50% centrality
- Close to high-multiplicity pp collisions
- Larger "jump" from e⁺e⁻ to pp than from pp to Pb-Pb

Λ_c^+/D^0 evolution with event activity: from pp to Pb-Pb

- Λ_{c}^{+}/D^{0} in Pb-Pb collisions higher than in pp collisions at intermediate p_{T}
- Similar in 0-10% and 30-50% centrality
- Close to high-multiplicity pp collisions
- Larger "jump" from e⁺e⁻ to pp than from pp to Pb-Pb
- p-Pb in-between pp and Pb-Pb
 - Measured down to $p_T \approx 0 \rightarrow$ Highlights importance to study evolution of p_T -integrated yield with multiplicity

Λ_c^+/D^0 in Pb-Pb collisions vs. models

Models

- Including hadronisation via coalescence (Catania, TAMU)
- based on Statistical Hadronisation (SHM)
- describe the data within uncertainties

Catania, EPJC 78 4 (2018) 348 TAMU, PRL 124, 4 (2020) 042301 SHM, JHEP 07 035 (2021)

Several arrows in the quiver

Solution in the second state of the second sta	Particle	Mass (GeV/c ²)
	D ⁰	1.865
	D ⁺	1.870
	D _s +	1.968
	Λ_{c}^{+}	2.286
$\begin{array}{ccc} \Lambda_{c}^{+} & \Xi_{c}^{0,+} & \Omega_{c}^{0} \\ (cud) & (csd,csu) & (css) \end{array}$	$\Sigma_{c}^{0,++}$	2.454
Sold Sold Sold Sold Sold Sold Sold Sold	Ξ_{c}^{0}	2.470
strangeness content	Ξ _c ⁺	2.468
$D^{0,+}$ D^+	$\mathbf{\Omega}_{c}^{0}$	2.695
(cū,cđ) (cš)		

$\Sigma_c^{0,++}$ production and $\Lambda_c^+ \leftarrow \Sigma_c^{0,++}$ feedown

Belle, PRD 97, 072005 (2018)

$\Sigma_c^{0,++}/D^0$ and $\Lambda_c^+ \leftarrow \Sigma_c^{0,+,++}$ feedown in pp at 13 TeV

arxiv 2106.08278

 $\Sigma_{c}^{0,+,++}/D^{0}$ ratio significantly larger than in e⁺e⁻ collisions

About x2 increase of $\Lambda_c^+ \leftarrow \Sigma_c^{0,+,++}$ feed-down $\rightarrow \Sigma_c^{0,+,++}$ "enhancement" larger than Λ_c^+ one

- $\rightarrow \Sigma_{c}^{0,+,++}$ produced differently in pp than e⁺e⁻ collisions
- \rightarrow suppression from (ud,dd,uu)₁ diquark creation absent or reduced, as comparison to models suggests

$\Sigma_c^{0,++}/D^0$ and $\Lambda_c^+ \leftarrow \Sigma_c^{0,+,++}$ feedown in pp at 13 TeV

arxiv 2106.08278

ALI-DER-493906

ALI-DER-493901

- Default PYTHIA8 (Monash 2013): significantly underestimates data
- Catania, QCM and SHM+RQM models describe both ratios

Several arrows in the quiver

$\sum_{c} 0, ++$ (cdd, cuu) uidsog (cdd, cuu) $\sum_{c} 0, +$ (cud) $\sum_{c} 0, +$ (cud) $\sum_{c} 0, +$ (csd, csu) (css)	Particle	Mass (GeV/c ²)
	D ⁰	1.865
	D ⁺	1.870
	D _s +	1.968
	Λ_{c}^{+}	2.286
	$\Sigma_{c}^{0,++}$	2.454
	Ξ_{c}^{0}	2.470
	Ξ_{c}^{+}	2.468
$D^{0,+}$ D_s^+	$\mathbf{\Omega}_{c}^{0}$	2.695
(cū,cd) (cs)		

Charm-strange baryons: $\Xi_c^{0,+}$

arxiv 2105.05187

 $\Xi_c^{0,+}/D^0$ ratio significantly larger than in e⁺e⁻ collisions

Default PYTHIA8 (Monash) largely underestimates the data

PYTHIA8 with CR-BLC (Mode0,2,3) and SHM+RQM predict ratios significantly larger than in e⁺e⁻ but significantly underestimate the data

QCM underestimates the ratios

Catania closer to the data

ALI-PUB-487391

Ω_c^0/D^0 and Ω_c^0/Ξ_c^0 ratios in pp collisions at 13 TeV

ALI-PREL-486632

BR of $\Omega_c^0 \rightarrow \Omega^- \pi^+$: only theoretical estimate exists. Assuming this value for comparing models to data:

- Only Catania reproduce both ratios when including contribution from higher-mass resonance decays
- QCM, PYTHIA8 CR-BLC (Mode 2), and especially Monash lower by order(s) of magnitude

Impact on branching fractions and cross sections

arxiv 2105.06335

ALI-PUB-488617

Total $c\bar{c}$ **cross section** at |y| < 0.5 estimated at 5 TeV from all measured particle-species cross sections

Re-evaluated at 2.76 and 7 TeV using new D⁰ FF **40% higher values w.r.t. using e⁺e⁻ FF** On upper edge of FONLL and NNLO

Measured baryon-to-meson ratios imply violation of universality of fragmentation fractions (FF) already in pp collisions:

 \rightarrow cannot rely on e⁺e⁻ FF to calculate charm cross section from D meson data

 \rightarrow new FF estimated in pp collisions at 5 TeV from all measured hadron-species cross sections

Summary

Charm-hadron particle species production and relative abundances powerful probe of hadronisation process in all systems

Overall: large enhancement of charm baryon production relative to charm meson in pp, p-Pb and Pb-Pb collisions with respect to e^+e^- and ep collisions

- \rightarrow Charm hadronisation involves different processes in hadronic collisions than in e⁺e⁻ and ep collisions
 - Coalescence of charm quarks with light quarks from a thermalised and expanding bulk?
 - Stronger effects from Colour Reconnection in an environment enriched of coloured partons from MPI

Far from a full understanding:

- most of theoretical models do not provide a complete and satisfactory description
- "Catania" model with coalescence in pp closer to the data

New data from incoming run 3 and run 4 at the LHC will improve and extend experimental results

• ALICE upgrade: higher statistics (more than factor 100 for min. bias pp collisions) + new ITS

Other related results:

A. Isakov, ALICE measurements of inclusive untagged and heavy flavor-tagged jets in pp, p-Pb and Pb-Pb collisions 26

Baryon-to-baryon ratios

arxiv 2105.05187

Λ_c^+/D^0 compared with Λ/K_s^0 and p/π^+

arXiv:2011.06079, arXiv:2011.06078

Similar p_{τ} trend and evolution with multiplicity of baryon-to-meson ratios in light and heavy-flavour sector

Λ_c^+/D^0 compared with Λ/K_s^0 and p/π^+

Open heavy-flavour production vs. pQCD

Plethora of data indicating that open-charm and open-beauty meson production

- vs. p_{T} and y (wide range covered)
- at very different collision energies
- charm meson species relative abundances

is described by pQCD calculations relying on factorisation

Open heavy-flavour production vs. pQCD

- Plethora of data indicating that **open-charm and open-beauty** production
- vs. p_{τ} and y (wide range covered)
- at very different collision energies
- charm meson species relative abundances

is described by pQCD calculations relying on factorisation

POWHEG+NNPDF3.0L

20-2-25

2.5 < y < 3.0, r

40-x-45 m-8

PT [GeV/c]

B[±]

28.0 pb⁻¹ (pp 5.02 TeV)

Data FONLL lyl < 2.4

Global uncert. 3.8%

PONLL

GMVENS

Λ_{c}^{+}/D^{0} ratio in pp collisions at 5 TeV

 Λ_{c}^{\dagger}