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N = 4 supersymmetric Yang-Mills theory in 4-dimensions (SYM4’4)

« The SYM, , theory can be obtained by dimensional reduction of SYM, ;,in D = D__ =10 with all fields
being in the adjoint representation of SU(N,).

« The action and Lagrangian that generates the perturbative expansion for SYM, , in Minkowski-space
can be exgrrond ~e

SSYM4,4 = /d4513 ESYM4,4 , with
1 2, T Y 2
Lsym,, = Tr —§GW + (Dp®a)” + i Popi — 59 (i[® 4, PB])

—igy; |ag; Xp + 165575 Yq, zpj]} + Lgt + Lon + ALsym ,

« The action of N = 1 supersymmetric Yang-Mills in D dimensions (SYM, ) can be written in Minkowski
space as

1 _
SsyM,y p = / dPx Tr [—§G?\4N + 2iypTM Dsz}



Background and Motivation

« The perturbative expansion of the free energy of the SYM, , at high temperature (T) can be written
as in the form
F(A-0) ~T* [ag2® + azA* + a32%/% + (a, + ajlog)A? + 0(25/2)], (1)

where A = gzNC’ is the ‘t Hooft coupling Nc and g is the color and the coupling constant in

QCD, respectivelv.

Free energy of the :
~02| = Jigeal SYM, , plasma| = [non-analytics, e.g. 0(2*%)
l

l
0P| = Reorganizing the perturbation theory' to account for the
thermal mass of the gauge bosons and scalar fields

The 2-loop vacuum R
Feynman diagrams cﬂ

non-analytics, e.g. 0(1%logA)

D.J. Gross, R.D. Pisarski and L.G.
Yaffe, Rev. Mod. Phys.53 (1981) 43

P.B. Amold and C.-X. Zhai, hep-ph/9408276; hep-ph/9410360 ﬂ
Like QCDz2, there are uncanceled infrared divergences at the three-loop level




Background and Motivation

Full 0(12)| = Require 3-loop
calculation

[———3

|

Generate 0(1°/2)

Consider the dressed propagators

« In the weak-coupling limit the SYM, , free energy has been calculated through 7\% giving3,

A.Fotopoulos and T.R. Taylor, hep-th/9811224

F S 3 3 + \/E M.A. Vazquez-Mozo, hep-th/9905030
F. == S =1- 2_2/1 + 3 13/2 + -, (2) C.-j. Kim and S.-J. Rey, hep-th/9905205
ideal ideal n n
where: Figeql = —dam? T*/6 is the ideal or Stefan-Boltzmann limit of the free energy,

Sideal = —2dam*T?/3 is the entropy density,

d, = N? — 1 is the dimension of the adjoint representation.

The aim of our work is to get 4th term ~(a, + a;log1)4? in eq.(1)




RDR Scheme

Conventional dimensional regularization is known to be unsuitable for supersymmetric theories (does not manifestly preserve supersymmetry and unitarity)

In order to restore super-invariance, W Siegel phys. Lett. 8 8a(1979) 193 proposed a new version of dimensional regularization called "regularization by dimensional
reduction" (RDR) (preserves gauge invariance, unitarity, and supersymmetry )

. To maintain supersymmetry is to take all fields in (SYM1 D) to be D-dimensional tensors or spinors and all momentum to be d = D - 2€ vectors.

) without thermal mass contributions.

SYM, , can be obtained by dimensional reduction from the .#’=1 SYM theory in 10-dimension(SYM_

RDR has been applied to pure Yang-Mills theory; Yang-Mills theory coupled to scalars and fermions; supersymmetric QED and /" = 1 SYM.



The resumed Lagrangian density

o The reorganized Lagrangian density in frequency space can be rewritten as

Iéeﬁs(lli/lni,él = {LSYM4,4 + Tr[m%)A%(Spo — qu)?él(spo]} — Tr[m%)A(Q)dpo — M2q)1245p0]

where m  is the thermal gluon mass and M is the scalar mass,

only contribute to the zero Matsubara modes of the two fields and

6p, is shorthand for the Kronecker delta function 6p,, .

« Then we absorb the two A,2 and @2 terms in the curly brackets into our unperturbed Lagrangian and treat
the two terms outside the curly brackets as a perturbation.



The resumed Lagrangian density

The calculation of the thermodynamics up to 0(1?)

)
( \

Feynman diagrams
for the 3-loop order

Feynman diagrams
up to 2-loop order

[ { : \
Compute directly in SYM, 4 3-loop gluonic and Massless 3-loop
under the RDR scheme , scalar counterterm vacuum diagrams
since we must dress the with bare propagators |
gluon and scalar || Compute in
propagators differently Compute directly SYM; 10 under
ﬂ in SYM, 4 the RDR scheme
| g
g¥ = 4, Trl, = 4, the dimension g = 10, Trl3, = 8, the dimension

for the gluon field D = 4 and for for the gluon field D = 10and for
all momentum d = 4 — 2¢ all momentumd = 4 — 2¢




Feynman Diagram up to 3-loop order
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Fig.1 The 1-loop diagrams for SYM, ,
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Fig.3 The 3-loop diagrams with
bare propagators for SYM, 4,
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Fig.2 The 2-loop diagrams for SYM, ,
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Fig.4 The 3-loop gluonic and scalar counterterm
diagrams with bare propagators for SYM, 4

The dashed lines indicate a scaler field and dotted lines indicate a ghost field. The crosses are the thermal

counter terms.




Free energy up to A2 of SYM, ,

« The resumed one-loop free energy
Fieop = daFoa + dpFop + dsFoc + daFoa (4)

with dr = 4d, and ds = 6d, . By using the resummed gluon

and scalar propagators, one obtains

5 D+4 r : Ve
ooy = d“"[ 300 = o= g (mp + 6M 3)] . (5)
where by = i log P? = ——T and fo = i log P? = 7_7T2T4
0—' o 8 T 0= ) g = 360"

By imposing D =4, m3= 2AT?, M?= AT? and truncating at 0(e°),

we obtain
“ZT«*I
Flr(sum — —dy (7— ) [1 4+ 3 + \/_/\5/2] (6)

loop 6 3




Free energy up to A2 of SYM, ,

« The resumed two-loop free energy

Fyfoop = dA{/\[]:la + Fip + Fic + Fia + Fie + Fif + Fig + Fin)
+ Fii +]:1j} , (7)

by using the resummed gluon and scalar propagators, one obtains

resun D +4 9 o M?TZ 3 M
5doop = )\44{ [(D +4)by — 1601 f1 + 8f1] + 6 A log - + 2log 2
m DT2 3 D mp mpMT?
— —log— +2log?2 ) + 3————— 8
+ (A )? (4 + 3 0g T + 2 log (47)? ’ (8)
1 . 1 2n+1—-d
= n = . = - n > 1,
where b, ip p2n I i{p} p2n (2 1)b , n>1

By imposing D = 4, m%= 2AT?, M?= AT? and truncating at 0(e?),
we obtain

2T 3 3 3v2 1510g2 .
resum __ —_— \ — | — - ' 2 9
FyGoum (IA( 5 )[ A ‘(8 1 1 log/\>/\] ~(9)




Free energy up to A2 of SYM, ,

« The resumed three-loop free energy

resum __ vacuuimm sct bet
F3— — Y + 3-loop + ‘F3- (10)

loop 3-loop loop

where  Fyfioop" = (1-4)‘2 [-FQa + -sz + -FQC + -FZ(I + '7::2(:‘ + -FZJ + -FZQ

3-loop
h (11)
+ Fop + Foi + f2j1|:ll)="ll£)2< .

Infrared divergences will be generated from eq.(11) due to three-momentum
integrations. These divergences will be canceled by the thermal mass
counterterm diagrams in Fig.4.

The shaded blob can be expressed as i NN
AHW/(P) = H“,,(P) - HPP(O)()},()()Q,,()(SPU , ‘;1.~<.["_,:~;) \\\‘C"/’
and .
AP(P)="P(P)—"P(0)ép, , @ - T e
~~ s P} § i

where 11,,,(P) and P(P) are the self
energy of bosons and scalars.



We obtain
/ b / f
3 op = daN6[(D + 4)by — 8 1] hf IT(P) _ Qi t (P)] (12)

J P P2 J P P2 ’
FSt = dar}(D — 2)[(D + )by — 8] gf I(P) _ zgf’ [°(P)
3-loop — YA 1 1 + P2 4., P2
1 T°
- 13
SO+ | (13)
‘YpP)  T? [1 fi 1
where — Pl : -
ip 22 (4r)? [4€ + log 1T T log 27 + 2] + Ofe) |
" 11/ (P) T
i) P = (n)? log2+ Ofe) .

By imposing D = 4,Trl3, = 8,mj = 2AT*, M*= AT* and truncating
at 0(e?) , we obtain

. 2T4 /\‘2 C,(_l)
Fium — —dy( ~ 3+ 3y + 3- 5log2 — 61 14



Free energy up to A? of SYM, , — Result

« By combining egns. (6) (9) and (14), the result of the resumed free energy up to 3 loop level for
SYM, , under the RDR scheme is

24
F=—dA(”T){1——/1+3+\/—/12+ l—ﬁ—ﬂ+§y5+
6 2 16 8 2

E( (-1) 25 . 2
T log2 —3logm + = logl]l } (15)

o This result holds for all N_.

« The result (15) is manifestly finite due to an explicit cancellation between three-loop infrared
singularities and the three-loop counter term diagrams.

« These cancellations remove all infrared divergent contributions.

« In addition, there are no remaining poles due to ultraviolet divergences, since the coupling does not
run in SYM, , and, hence, no coupling constant renormalization counter term is required.



Large — N_generalized Padé approximant

« With new perturbative coefficients in hand one can produce an updated Padé approximant.
J.P. Blaizot, E.lancu, U.Kraemmer and A.Rebhan, hep-ph/0611393

« Based on the large-Nc structure of the strong-coupling expansion, we find that the following form
can reconstruct all known coefficients in both the weak- and strong-coupling limits

S 1+ aAY? + bA + cA3/2 + dA? + eA5/?

Sideal 14 A1/2 4 bA+ 5 cA3/? + 5 dI? + 5 A5/
with

(16)

42 2(3+/2)

TBEE) ¢(-1)

b= il A N 16m[45(3 +v2){(3) + n?] N 72 (yg + (_1)) +138v2 + 109 — 15010g(2)
~ 2 08\ 2 1822502(3) 7212 :

— 3 2 /o 3 2h 3

b= b4 _ 180(3 +2)¢(3) + 8n .

27712 €= 15¢(3) » d = 20257172(3) . - 15¢(3) B 5m2{(3) -



Scaled entropy density as a function of A
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Fig.5 SYM, 4 scaled entropy density §/S;4e4| @s a function of 4. The green dotted, red
dashed, and blue long-dashed curves correspond to the perturbative result truncated
at 0(2), 0(23/?), and 0(4?), respectively. The purple dot-dashed curve corresponds
to the large-N, strong-coupling result truncated at 0(173/2). The solid gray line is the
updated Padé approximant.



Comparison of entropy density

One can take the value of A at which the truncated perturbative solutions significantly depart from the Padé
approximant as an estimate of the range of validity of each perturbative truncation.

From Fig. 5, when truncated at ©O(4) , one must have A=< 0.02. At ©(43/2), one finds A = 0.2, and at ©(42), one
finds A = 2.

In comparison to the convergence of the perturbative QCD free energy we observe that the O(A2) truncation in
SYM, , has P/ Pyen = S/S iqea < 1 for A = 10, whereas the O(A?) truncation in QCD has & > £, for A >3.5.

ideal ideal

In contrast, lattice QCD measurements of the pressure find # < &%, .

Suggestion: perturbative expansion of the SYM, , free energy might have better convergence than the
perturbative expansion of the QCD free energy.



Conclusions and Outlook

We computed the thermodynamic function of SYM, , to ©(42) under RDR Scheme.

Having computed new coefficients, we then constructed a large-N_ Pade approximant that
interpolates between the weak- and strong-coupling limits.

In the near future we plan to also compute the coefficient of A>/2in the SYM, , free energy.

We also plan to pursue a three-loop HTLpt calculation of SYM, , thermodynamics to extend our
previous two-loop HTLpt calculation.



