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Jets in the medium

jet modified jet

J. Brewer, HP’20

m Quark-gluon plasma (QGP) created in heavy ion collision:

deconfined phase, hot dense medium

m Jets, collimated sprays of energetic particles, serving as
hard probe to medium properties

m Jets are quenched and modified in the medium via
parton energy loss
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Jet substructures

m Detector as camera: positions, energies of
particles

m All jet constituents are reclustered in angular
ordering.

m SoftDrop: find the first hard splitting between two
subjets satisfying zg > Zcut8P with momentum
sharing z; and angle of branching Rj.

Yi-Lun Du

2 = DPT,sublead
- PT,lead + PT,sublead

Q

Reconstructed \

jet by C/A n

algorithm, i.e, ‘ R, =1/An* + Ag?
angular

ordering tree

Sept 5, 2021 3/17



Jet modifications: ambiguous interpretations

0 0.05 o1 015 R m Interplay: jet substructures, e.g., Ry, could
g af op ALICE Preliminary — be modified during the passage through the
2 350 mPb-PbO-10%  |Sy=502TeV .
Fb'i ab Sys. uncertainty CRh=arg;d Jle't]s |inél-éf7 med|um and/OI’ . )
250 o 60<p, , %80 Gevic — affect the amount of jet energy loss and then this
2f #* b Zcftl;ggz,/’ % e jet doesn’t pass the pr cut in the selection, i.e.,
e o, selection bias.
osf ' s m Jets produce emissions with smaller Ry in
£’& 2f :s:;z«;':::: w P medium than in vacuum: presumes medium scale
& : dominates
m Jets with larger Ry in vacuum are more
. suppressed in medium: presumes vacuum scale

o 02 04 06 08 o dominates

m Can we disentangle these two effects with
knowledge of the degree of quenching for e4¢
individual measured jets?

m Ratio of jet observables distr.
between medium and vacuum,
BOTH with plf* > pSut
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Energy loss ratio

Vac

same early,
high energy pattern,
up to matching/stopping scale

Yi-Lun Du

E Vacuum-like
; emission
1

ph

__ " f Hypothetical
X.Yh - Eh vacuum-like
? emission

f Medium induced
emission
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Hybrid model

m Vacuum jets using p7 min = 50
GeV, with oversampling power
P

m PbPb collisions in 0-5%
centrality at \/s = 5.02 ATeV.

m Reconstructed jets with anti-kr,
R = 0.4, required to be |n| < 2

m PYTHIA8 down to hadronization scale and pr' > 100 GeV.
m Strongly coupled energy loss at every stage m ~ 250,000 jets. 80% for training

and 20% for validation.
m Hadrons from the hydro. wake (medium response)

Casalderrey-Solana, Gulhan, Milhano, Daniel Pablos, Rajagopal JHEP ’15,16,17
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CNN Prediction
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m Jet quenching increases the number
of soft particles at large angles
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Prediction with jet observables & Interpretability

Jet shape

Input (size) Output Network Loss E EEEEEE::
FF (10) Xin FCNN 0.0058 _ S )
Jet shape (8) Xih FCNN 0.0033 210 Tomeose | @
FF, jet shape (18) Xin FCNN 00032 & e A
FF, jet shape, features (25) Xjh FCNN 0.0028 = 219" — ossepcoss
Jetimage & FF, jet shape, features (25) Xjh API: CNN&FCNN | 0.0028 - Z::Z,:;:i
] Jet Shape outperforms Jet FF ok o ol o am om 0w m; o0
m Motivates construction from jet 101U X versus fited j by jet shape
shape by 17-parameter fitting: o
— Still a bit worse than CNN N 030
= 0.25
m Jet observables recover the fg 020
performance by jet image with .
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0.00

interpretability!
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Jet selections

Study jet observables for jets that belong to 2 different
quenching classes:

- Unquenched class: Xjh > 0.9. Histogram for x;» w/weights
— Quenched class:  xj < 0.9. 5| = X POPbjetpr>200Gev FES
> Xine PbPD Jet pr > 100 GeV,
) E Pl > 200 GeV ES
m pp jets: pr > 200 GeV o
m PbPb jets: E . j
— Final Energy Selection (FES): impose pr cut on £
final energy pr > 200 GeV — Steeply falling energy = ’:ijF
loss dist. Biased by little quenched samples! 0 o

00 02 04 06 08 10

— Initial Energy Selection (IES): impose pr cut on Xin
initial energy via xjn, pr/xjn > 200 GeV & pr > 100
GeV — More support of fairly quenched jets in the
quenched class. More distinguishable!
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Jet radius, R,
Rg ratio between PbPb and pp jets

m FES: Selection bias towards jets with
smaller Ry, originated by pr cut.

m ES:

— Unquenched class: still biased due to
Xjn cut: to belong to this class, a jet had
better to be with smaller Ry, compared
with all pp jets.

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of large Ry - creation
of a new, semi-hard branch.
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Groomed momentum sharing fraction, z,

z4 ratio between PbPb and pp jets

m FES: No selection bias observed. Scale
of emission isn’t strongly dependent on
splitting fraction z,.

m IES:

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of smaller z, subjets.
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Applications: creation points & orientation
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m |ES “removes” final state interactions (selection
bias), since we record “all” jets.

m |ES provides access to the genuine jet creation
point (path length) distribution and possible

initial-state jet anisotropy.
Y.-L. Du, D. Pablos, K. Tywoniuk, arXiv: 2106.11271
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Applications: Jet tomography, length VS x;,

O 030
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Due to the strong correlation
between L and x,, selecting

Histogram for L w/weights
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jets with different x;, will
naturally select jets that

traversed different L.

— Great potential to make
tomographic application!
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Conclusion and outlook

m CNN can extract energy loss jet-by-jet from jet image with good performance

m Procedure generalisable to many jet quenching models

m Jet shape contains significant predictive power: angular distribution of soft particles
m Mitigate selection bias and reveal medium effects on various jet observables

m Open opportunity to make tomographic study

— Generalizability to other MC quenching models?

Applicability to more realistic environment: fluctuating background?
Better performance from other state-of-the-art neural networks?
Extract traversed length with better precision?

Unfold jet initial properties apart from jet energy?
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Backup: Soft Drop multiplicity, ngp

ngp ratio between PbPb and pp jets

m FES: Selection bias towards jets with
fewer ngp, originated by pr cut.

m IES:

— Unquenched class: still biased due to
Xjn cut: to belong to this class, a jet had
better to be with fewer ngp, compared
with all pp jets.

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of large ngp.
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Backup: Jet shape & FF with FES & IES
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Backup: Jet tomography with y;, & v»

2 i
=V p,z( —p!: Creation points density for centrality 30-40%, R = 0.4 @ y/Syy = 5.02 TeV, FES, pr > 100 GeV
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and right (px > 0)

m Bottom row: Out-of-plane
jets (vo < 0) going up i
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m To get very quenched, jets
have to travel longer in
medium. So v» & py , are
helpful for jet tomography.
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