Constraints on coloured scalars from global fits

O. Eberhardt, V. Miralles and A. Pich

Instituto de Física Corpuscular (Universitat de València and CSIC)

Portugal, September 8th, 2021

PANIC 2021

Based on: [2106.12235]

- \blacksquare The Standard Model succeed but it has some deficiencies \Rightarrow Not the definitive theory
- Why just one Higgs boson?
- Processes involving flavour changing neutral are strongly constrained
- In order to avoid those processes some assumption can be made
- Minimal Flavour Violation (MFV) ⇒ the dynamics of flavour violation is completely determined by the structure of the ordinary Yukawa couplings
- A. V. Manohar & M. B. Wise \Rightarrow only $(\mathbf{1,2})_{1/2}$ and $(\mathbf{8,2})_{1/2}$ satisfy MFV

< D > < P > < P >

- Many works studying extensions with more $(1,2)_{1/2}$ scalars
- We focussed on the $(\mathbf{8,2})_{1/2}$ scalar extensions
- For the first time a global fit of this model is performed
- We use the public HEPfit package
- We study both theoretical and experimental constraints

< □ ▶ < 🗇 ▶

The Manohar-Wise Model

Scalar sector

 $\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \qquad S^A = \left(\begin{array}{c} {S^+}^A \\ {S^0}^A \end{array}\right)$

 Different quantum numbers than the SM Higgs doublet No mixture
Conservation of colour Cannot acquire a vev

$$\langle 0|\phi|0\rangle = \left(\begin{array}{c} 0\\ \frac{1}{\sqrt{2}}v \mathrm{e}^{i\theta} \end{array}\right) \qquad \quad \langle 0|S^A|0\rangle = \left(\begin{array}{c} 0\\ 0 \end{array}\right)$$

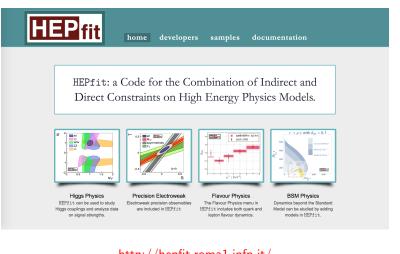
• Most general potential build with these scalars ($S = S^A T^A$)

$$\begin{split} V &= \frac{\lambda}{4} \Big(\phi^{\dagger i} \phi_i - \frac{v^2}{2} \Big)^2 + 2m_S{}^2 \operatorname{Tr} S^{\dagger i} S_i + \nu_1 \phi^{\dagger i} \phi_i \operatorname{Tr} S^{\dagger j} S_j + \nu_2 \phi^{\dagger i} \phi_j \operatorname{Tr} S^{\dagger j} S_i \\ &+ [\nu_3 \phi^{\dagger i} \phi^{\dagger j} \operatorname{Tr} S_i S_j + \nu_4 \phi^{\dagger i} \operatorname{Tr} S^{\dagger j} S_j S_i + \nu_5 \phi^{\dagger i} \operatorname{Tr} S^{\dagger j} S_i S_j + h. \text{ c.}] \\ &+ \mu_1 \operatorname{Tr} S^{\dagger i} S_i S^{\dagger j} S_j + \mu_2 \operatorname{Tr} S^{\dagger i} S_j S^{\dagger j} S_i + \mu_3 \operatorname{Tr} S^{\dagger i} S_i \operatorname{Tr} S^{\dagger j} S_j \\ &+ \mu_4 \operatorname{Tr} S^{\dagger i} S_j \operatorname{Tr} S^{\dagger j} S_i + \mu_5 \operatorname{Tr} S_i S_j \operatorname{Tr} S^{\dagger i} S^{\dagger j} + \mu_6 \operatorname{Tr} S_i S_j S^{\dagger j} S^{\dagger i} \end{split}$$

The Manohar-Wise Model

The vev produces a splitting of the masses

$$m_H^2 = \frac{\lambda}{2}v^2 \qquad m_{S_R^0}^2 = m_S^2 + (\nu_1 + \nu_2 + 2\nu_3)\frac{v^2}{4}$$
$$m_{S^\pm}^2 = m_S^2 + \nu_1\frac{v^2}{4} \qquad m_{S_I^0}^2 = m_S^2 + (\nu_1 + \nu_2 - 2\nu_3)\frac{v^2}{4}$$


The kinetic term of the colour octet is

 $\mathcal{L}_{S\mathrm{Kin}} = 2 \operatorname{Tr}[(D_{\mu}S)^{\dagger}D^{\mu}S] \text{, with } D_{\mu}S = \partial_{\mu}S + ig_{s}[G_{\mu},S] + ig\widetilde{W}_{\mu}S + iy_{S}g'B_{\mu}S + ig_{s}[G_{\mu},S] + ig\widetilde{W}_{\mu}S +$

The Yukawa term takes the form:

$$\mathcal{L}_{SY} = -\sum_{i,j=1}^{3} \left[\eta_{D} Y_{ij}^{d} \overline{Q}_{L_{i}} S d_{R_{j}} + \eta_{U} Y_{ij}^{u} \overline{Q}_{L_{i}} \widetilde{S} u_{R_{j}} + \mathsf{h. c.} \right]$$

< □ > < 同 >

http://hepfit.roma1.infn.it/

<ロ> (日) (日) (日) (日) (日)

Parameters	$\frac{m_S^2}{(0.4^2, 1.5^2)}$ TeV		ν_n	μ_n	η_U	η_D
Priors	$(0.4^2, 1.5^2)$ leV	- (-10), 10)	(-10, 10)	(-5, 5)	(-20, 20)
Positivity Unitarity		}	Theoretical constraints			
	Signal Strengths Searches					

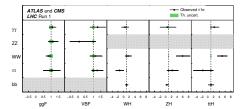
Flavour

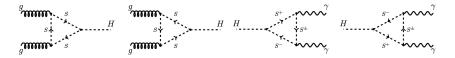
Electroweak Precision

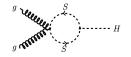
Experimental constraints

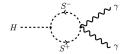
(日)

The MW Constraints: Theoretical

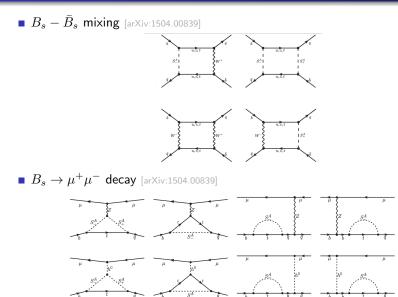

- Renormalisation group stability \rightarrow Absence of Landau poles and bounded from below [arXiv:1808.05824]
- Perturbative unitarity: scattering of two to two scalars must not have a probability largen than 1
- Expressions at LO available for large s approximation \rightarrow we only apply them for scales higher than $\mu_u=1.5~{\rm TeV}~_{\rm [arXiv:1303.4848]}$
- Using RGEs we obtain approximately the NLO(+) perturbative unitarity condition [arXiv:1702.08511]


$$\begin{split} & \text{LO:} \quad \left(a_{j}^{(0)}\right)^{2} \leq \frac{1}{4} \\ & \text{NLO:} \quad 0 \leq \left(a_{j}^{(0)}\right)^{2} + 2\left(a_{j}^{(0)}\right) \operatorname{Re}\left(a_{j}^{(1)}\right) \leq \frac{1}{4} \\ & \text{NLO+:} \quad \left[\left(a_{j}^{(0)}\right) + \operatorname{Re}\left(a_{j}^{(1)}\right)\right]^{2} \leq \frac{1}{4} \end{split}$$


Perturbative behaviour of quantum corrections

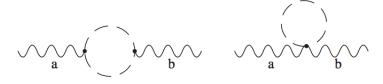

The MW Constraints: Higgs Signal Strengths

$$\mu^{X} = \frac{\sigma(pp \to h)\Gamma(h \to X)}{\sigma(pp \to h)_{SM}\Gamma(h \to X)_{SM}}$$

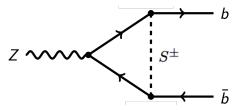

The MW Constraints: Direct Searches

We use MadGraph for producing the theoretical prediction

We compare the result with data of ATLAS and CMS

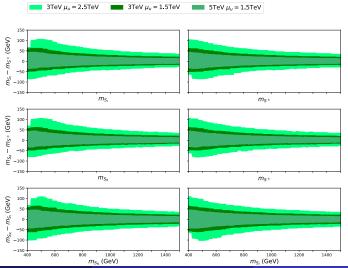

Channel	Experiment	Mass range	L
		[TeV]	[fb ⁻¹]
$pp \to S_{R,I} \to tt$	ATLAS	[0.4;3]	36.1
$bb \to S_{R,I} \to tt$	ATLAS	[0.4;1]	13.2
$pp \to S_{R,I}tt \to (tt)(tt)$	ATLAS	[0.4,1]	36.1
$pp \to S^+ b\bar{t} \to t\bar{b}b\bar{t}$	ATLAS	[0.2;2]	139.1
$bb \to S_{R,I} \to bb$	CMS8	[0.1;0.9]	19.7
$gg \to S_{R,I} \to bb$	CMS8	[0.325;1.2]	19.7
$pp \to S_{R,I} \to bb$	CMS	[0.55;1.2]	2.69
$bb \to S_{R,I} \to bb$	CMS	[0.3;1.3]	35.7
$pp \to S_{R,I} \to gg$	CMS	[0.5,8]	27 & 36
$pp \to S_{R,I}S_{R,I} \to (gg)(gg)$	ATLAS	[0.5,1.75]	36.7

The MW Constraints: Flavour



The MW Constraints: Electroweak Precision Observables

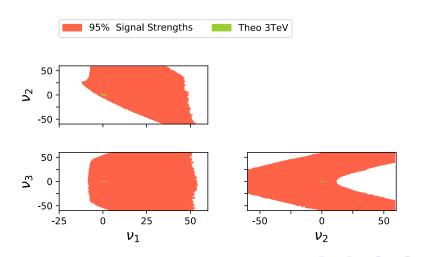
• Contribution to the oblique parameters (S, T and U) [arXiv:1002.1071]



• Contribution to the $R_b = \frac{\Gamma(Z \rightarrow b\bar{b})}{\Gamma(Z \rightarrow hadrons)}$ [arXiv:0907.2696]

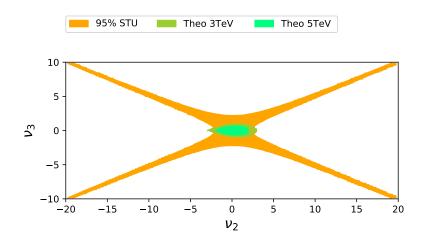
Theoretical constraints

Constrain the parameters of the potential \rightarrow Constraints on the mass splitting



Víctor Miralles (IFIC-UV)

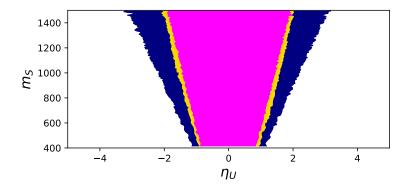
Constraints on coloured scalars from global fits


Higgs Signal Stregths

No constraints from Higgs Signal Stregths alone

Oblique Parameters

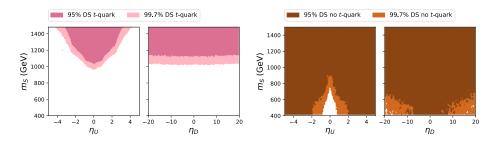
Important constraints on $\nu_2 - \nu_3$ plane

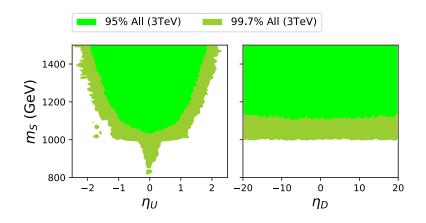


< □ > < 同 >

Flavour and R_b

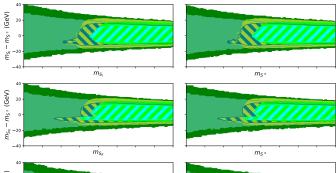
Important constraints on $\eta_U - m_S$ plane, ΔM_{B_s} dominant

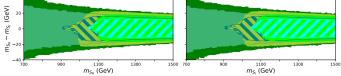


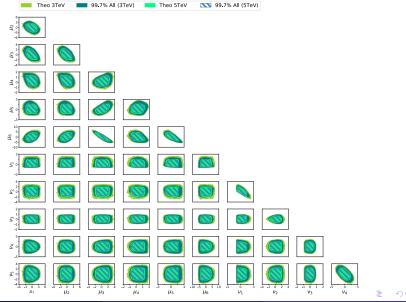


< □ > < 同 >

Direct Searches (DS)


Dominant constraints come from processes with *t*-quarks produced




< D > < B >

	Theo 3TeV 🔜	95% All (3TeV)	95% All (5TeV)
	Theo 5TeV	99.7% A ll (3TeV)	99.7% All (5TeV)

All Observables

Constraints on coloured scalars from global fits

- For the first time a global fit of the MW is performed
- The theoretical constraints are dominant for the parameters of the potential
- \blacksquare DS with t-quark production \rightarrow m_S > 1.05 TeV with 95% probability
- Flavour $\rightarrow |\eta_U| < 1.8$
- No constraints of η_D in the range (-20, 20)

< □ > < 同 > < 三