Flavor anomalies and their BSM interpretation

Claudia Cornella Panic, 5-10.09.2021

The flavor anomalies

 $b \rightarrow c l \nu$

~15% deviation from τ/μ , *e* universality

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)}$$

 $b \rightarrow sll$

~15% deviation from μ/e universality

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$$

What do we learn from B anomalies? If they are NP signals, where else should we see something?

Data in $b \rightarrow sll$

Several discrepancies from the SM in $b \rightarrow sll$:

- P'_5 $(B \to K^{(*)}\mu\mu$ angular distribution) - deficit in $\mathscr{B}(B \to X_s\mu\mu)$ $X_s = K, K^*, \phi$

"not-so-clean"

$$B \bigoplus_{\substack{k \in \mathcal{W} \\ k \in \mathcal{W}$$

$$\mathscr{B}(B_s \to \mu\mu)_{\rm SM} = (3.66 \pm 0.14) \times 10^{-9}$$

[Beneke et al., <u>1908.07011]</u>

Recent LHCb updates:

2.3 σ deficit in $B_s \rightarrow \mu\mu$ combining ATLAS, CMS, LHCb 3.1 σ in $R_K^{[1.1,6]}$ (evidence of LFUV) [LHCb, 2103.11769]

EFT for $b \rightarrow sll$

 $b \rightarrow sll$ data have a simple EFT solution:

Fit to **clean observables** only: **left-handed** NP hypothesis ($\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$) preferred by 4.6 σ over SM

~ 4.8 σ adding all $b \rightarrow sll$ data (treating ΔC_9^U as nuisance parameter)

 $\gg 5\sigma$ with current best estimate of $\bar{c}c$ loop [Altmannshofer, Stangl, <u>2103.13370</u>; Algueró et al, <u>2104.08921</u>; Hurth et al. <u>2104.10058</u>...]

These are *local* significances in NP space. Global? LEE non negligible, still 3.9σ

Isidori, Lancierini, Owen, Serra, 2104.05631]

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha}{4\pi} \sum_i C_i \mathcal{O}_i$$
$$\mathcal{O}_9^{\mu} = (\bar{s}_L \gamma_\mu b_L) (\bar{\mu} \gamma^\mu \mu)$$
$$\mathcal{O}_{10}^{\mu} = (\bar{s}_L \gamma_\mu b_L) (\bar{\mu} \gamma^\mu \gamma_5 \mu)$$

Theory lessons from $b \rightarrow sll$

It's a very weak interaction:

$$\bigvee_{\mu} \bigvee_{\mu} \bigvee_{\mu} \sim 3 \times 10^{-5} G_F \quad \Rightarrow \frac{g_{\rm NP}^2}{M_{\rm NP}^2} \sim \frac{1}{(40 \text{ TeV})^2}$$

Direct production could be out of reach, but good chances for indirect discovery:

- build up evidence in $b \rightarrow sll$ @LHCb and Belle II
- possibly test LFUV in $b \rightarrow dll$

$$R_{\pi}[q_{\min}^2, q_{\max}^2] = \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\mathcal{B}}{dq^2} (B^+ \to \pi^+ \mu^+ \mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\mathcal{B}}{dq^2} (B^+ \to \pi^+ e^+ e^-)} \stackrel{U(2)}{\approx} R_K^{(*)}$$

clean: pollution from long distance effects < 10% in large q^2 regions [Bordone, CC, König, Isidori, 2101.11626]

Which models? Z', leptoquarks

Data in
$$b \rightarrow c l \nu$$

 $R_{D^{(*)}} \equiv \frac{\mathscr{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathscr{B}(B \to D^{(*)} \ell \bar{\nu})}$

 $\sim 10\,\%\,$ enhancement of $R_{D^{(*)}}$, excess seen in tau mode.

Also clean SM prediction. [new: $B \rightarrow D^*$ form factors from lattice [Bazavov et al., <u>2105.14019</u>]

 3.1σ tension combining BaBar, Belle & LHCb results for R_D, R_{D^*}

EFT for $b \rightarrow c \tau \nu$

$$\mathscr{L}_{\text{eff}} = -2\sqrt{2}G_{F}V_{cb}\left[(1+g_{V_{L}})(\bar{c}_{L}\gamma^{\mu}b_{L})(\bar{\tau}_{L}\gamma_{\mu}\nu_{L}) + g_{V_{R}}(\bar{c}_{R}\gamma^{\mu}b_{R})(\bar{\tau}_{L}\gamma_{\mu}\nu_{L}) + g_{S_{R}}(\bar{c}_{L}b_{R})(\bar{\tau}_{R}\nu_{L}) + g_{S_{R}}(\bar{c}_{R}b_{L})(\bar{\tau}_{R}\nu_{L}) + g_{T}(\bar{c}_{R}\sigma^{\mu\nu}b_{L})(\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{L})\right]$$

Several options: g_{V_L} [Fermi-like interaction], $g_{V_L} + g_{S_R}$, $g_{S_L} = \pm 4g_T$

Any update in $b \rightarrow c \tau \nu$ helps pin down the Lorentz structure:

- NP in LFU ratios: V_L only $\Delta R_D = \Delta R_D^* (= \Delta R_{J/\Psi} = \Delta R_{\Lambda_c})$ $S, T \neq 0$ $\Delta R_D \neq \Delta R_{D^*}$
- Angular obs.: largely insensitive to V_L , powerful probe of S, T

Theory lessons from $b\to c\tau\nu$

It's a large effect (competes with tree level SM amplitude)

Constraints from low- and high-energy (LFU in τ decays, $pp \rightarrow \tau \tau$ tails) make model building for $R_{D^{(*)}}$ challenging

- charged Higgs excluded by au_{B_c} ,
- W' in tension with $pp
 ightarrow \tau au$

⇒ Leptoquarks (scalar/vector) are the favored candidates.

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$\boxed{R_{K^{(*)}} \ \& \ R_{D^{(*)}}}$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×	×
$S_1 \ (\bar{3}, 1, 1/3)$	×	1	×
R_2 (3, 2, 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)	\checkmark	\checkmark	\checkmark
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504

Towards a combined explanation

To account for **both** anomalies:

- $\Lambda_{\rm NP} \sim {\rm few} \; {\rm TeV}$
- NP coupled dominantly to 3rd family, smaller couplings to 1st and 2nd
- NP in semileptonic processes only (no 4-lepton/4-quark)

Towards a combined explanation

To account for **both** anomalies:

- $\Lambda_{\rm NP} \sim {\rm few \; TeV}$
- NP coupled dominantly to 3rd family, smaller couplings to 1st and 2nd
- NP in semileptonic processes only (no 4-lepton/4-quark)

Minimal SMEFT setup: Ieft-handed NP in semi-leptonic operators

$$\mathscr{L} = -\frac{1}{\nu^2} \left(C^{(3)}_{\ell q} (\bar{\ell}_L \gamma^\mu \tau^a \ell_L) (\bar{q}_L \gamma^\mu \tau^a q_L) C^{(1)}_{\ell q} (\bar{\ell}_L \gamma^\mu \ell_L) (\bar{q}_L \gamma^\mu q_L) \right)$$

works well:

$$\Delta C_{9}^{\mu} = -\Delta C_{10}^{\mu}$$

 V_{L} solution to $b \rightarrow c \tau \nu$
 $SU(2)_{L} \downarrow$
large $b_{L} \rightarrow s_{L} \tau_{L} \tau_{L}$
 \downarrow
 ΔC_{9}^{U} by RGE mixing
[Crivellin et al., 1807.02068]

Towards a combined explanation

To account for **both** anomalies:

- $\Lambda_{\rm NP} \sim {\rm few \ TeV}$
- NP coupled dominantly to 3rd family, smaller couplings to 1st and 2nd
- NP in semileptonic processes only (no 4-lepton/4-quark)

Minimal SMEFT setup: left-handed NP in semi-leptonic operators

$$\mathcal{L} = -\frac{1}{v^2} \left(C^{(3)}_{\ell q} (\bar{\ell}_L \gamma^\mu \tau^a \ell_L) \left(\bar{q}_L \gamma^\mu \tau^a q_L \right) C^{(1)}_{\ell q} \left(\bar{\ell}_L \gamma^\mu \ell_L \right) (\bar{q}_L \gamma^\mu q_L) \right) \\ \approx -\frac{2}{v^2} C_{LL} \left(\bar{q}_L \gamma^\mu l_L \right) (\bar{l}_L \gamma_\mu q_L)$$

works well: $\Delta C_{9}^{\mu} = -\Delta C_{10}^{\mu}$ V_{L} solution to $b \rightarrow c\tau\nu$ $SU(2)_{L}\downarrow$ large $b_{L} \rightarrow s_{L}\tau_{L}\tau_{L}$ \downarrow ΔC_{9}^{U} by RGE mixing
[Crivellin et al., <u>1807.02068</u>] $b \to s \nu_{(\tau)} \bar{\nu}_{(\tau)}$ requires $C^{(3)}_{\ell q} \approx C^{(1)}_{\ell q}$

(automatically satisfied for U_1 , needs to be enforced otherwise)

The only viable mediators are **leptoquarks**:

- no 4-lepton and 4-quark at tree level,
- no resonant production at high- p_T

Which LQ explains what?

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$ R_{K^{(*)}} \ \& \ R_{D^{(*)}} \\$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×	×
S_1 (3 , 1 , 1/3)	×	✓	×
R_2 (3 , 2 , 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)	\checkmark	\checkmark	✓
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504

The only viable mediators are leptoquarks:

- no 4-lepton and 4-quark at tree level,
- no resonant production at high- p_T

Which LQ explains what?

Three possibilities for both anomalies:

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$ R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	✓	×	×
S_1 (3 , 1 , 1/3)	×	\checkmark	×
R_2 (3 , 2 , 7/6)	×	\checkmark	×
U_1 (3 , 1 , 2/3)	 Image: A second s	\checkmark	✓
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504

The only viable mediators are leptoquarks:

- no 4-lepton and 4-quark at tree level,
- no resonant production at high- p_T

Which LQ explains what?

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	$\overline{(}$	×	×
S_1 ($\bar{3}, 1, 1/3$)	×	\checkmark	×
R_2 (3 , 2 , 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)	\checkmark	~	✓
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., <u>2103.12504</u>

Three possibilities for both anomalies:

$$S_1 + S_3$$
 [Crivellin et al 1703.09226; Buttazzo et al. 1706.07808; Marzocca 1803.10972...]

The only viable mediators are leptoquarks:

- no 4-lepton and 4-quark at tree level,
- no resonant production at high- p_T

Which LQ explains what?

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)		×	×
S_1 (3 , 1 , 1/3)	×	$\mathbf{\mathbf{k}}$	×
R_2 (3 , 2 , 7/6)	×	$\backslash \rangle$	×
U_1 (3 , 1 , 2/3)	 Image: A start of the start of	< (✓
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504

Three possibilities for both anomalies:

$$S_1 + S_3$$
 [Crivellin et al 1703.09226; Buttazzo et al. 1706.07808; Marzocca 1803.10972...]

$$S_3 + R_2$$
 [Bečirević et al., 1806.05689]

The only viable mediators are leptoquarks:

- no 4-lepton and 4-quark at tree level,
- no resonant production at high- p_T

Which LQ explains what?

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$ R_{K^{(*)}} \ \& \ R_{D^{(*)}} \\$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×	×
S_1 (3 , 1 , 1/3)	×	✓	×
R_2 (3 , 2 , 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)		\checkmark	✓
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504

Three possibilities for both anomalies:

$S_1 + S_3$	[Crivellin et al <u>1703.09226;</u> Buttazzo et al. <u>1706.07808;</u> Marzocca <u>1803.10972</u>]
-------------	--

 $S_3 + R_2$ [Bečirević et al., <u>1806.05689</u>]

$$U_1 \sim (3,1)_{2/3}$$
 (+ UV completion)

[di Luzio et al., <u>1708.08450</u>; Calibbi et al., <u>1709.00692</u>; Bordone, CC, et al. <u>1712.01368</u>; Barbieri, Tesi <u>1712.06844</u>; Heck,Teresi <u>1808.07492</u>...]

The U_1 simplified model

The **vector leptoquark** is the only single mediator solution:

- ▶ no tree-level contribution to $b \rightarrow s\nu\bar{\nu}$, protected from proton decay
- does not come alone: additional massive vectors (Z', G'), vector-like fermions

The U_1 simplified model

The **vector leptoquark** is the only single mediator solution:

- ▶ no tree-level contribution to $b \rightarrow s \nu \bar{\nu}$, protected from proton decay
- does not come alone: additional massive vectors (Z', G'), vector-like fermions

Stick to simplified model:

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) + \beta_R^{i\alpha} (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \text{h.c.} \qquad U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

Good description of all low-energy data with a "natural" flavor structure:

Low-energy predictions for the U_1

Low-energy predictions for the U_1

Large $b \rightarrow s \tau \tau$:

High-pT bounds for the U_1

The same interaction can be probed in **di-tau tails**.

 U_1 solution completely falsifiable at HL-LHC! (same for $R_2 + S_3$, still space left for $S_1 + S_3$)

Similar enhancements in all models for $R_D^{(*)}$.

Caveat: these conclusions are *very* sensitive to the central value of $R_D^{(*)}$!

[Faroughy et al, <u>1609.07138;</u> Fuentes-Martin et al. <u>2003.12421</u>..]

$B \rightarrow K \nu \bar{\nu}$ and B anomalies

One of the toughest constraints for model building; all combined solutions enhance it.

$$U_1, S_1 + S_3 \qquad \frac{\mathcal{B}(B \to K\nu\nu)}{\mathcal{B}(B \to K\nu\nu)_{\rm SM}} \approx 1.2 - 1.5$$

- for the U_1 absent at tree level, but any UV completion generates it at one loop
- $S_1 + S_3$ tuned to cancel interference with SM

$B \rightarrow K \nu \bar{\nu}$ and B anomalies

One of the toughest constraints for model building; all combined solutions enhance it.

$$U_1, S_1 + S_3 \qquad \frac{\mathcal{B}(B \to K \nu \nu)}{\mathcal{B}(B \to K \nu \nu)_{SM}} \approx 1.2 - 1.5$$

- for the U_1 absent at tree level, but any UV completion generates it at one loop
- $S_1 + S_3$ tuned to cancel interference with SM

$B \rightarrow K \nu \bar{\nu}$ and B anomalies

One of the toughest constraints for model building; all combined solutions enhance it.

$$U_1, S_1 + S_3 \qquad \frac{\mathcal{B}(B \to K\nu\nu)}{\mathcal{B}(B \to K\nu\nu)_{\rm SM}} \approx 1.2 - 1.5$$

- for the U_1 absent at tree level, but any UV completion generates it at one loop
- $S_1 + S_3$ tuned to cancel interference with SM

B-physics anomalies might be the manifestation of a new short-distance interaction violating Lepton Flavor Universality.

B-physics anomalies might be the manifestation of a new short-distance interaction violating Lepton Flavor Universality.

Growing significance of LFUV in $b \rightarrow sll$;

Hard to imagine everything is a fluctuation. In any case, we'll find out!

B-physics anomalies might be the manifestation of a new short-distance interaction violating Lepton Flavor Universality.

Growing significance of LFUV in $b \rightarrow sll$;

Hard to imagine everything is a fluctuation. In any case, we'll find out!

Data in $b \rightarrow c$ imply large effects in many observables just around the corner. Need experimental corroboration to guide us:

Th: model building for $b \rightarrow sll$ is *very different* from that for $b \rightarrow sll$ and $b \rightarrow c\tau\nu$ without $R_{D^{(*)}}$ no obvious connection flavor anomalies - flavor hierarchies Exp: is there a concrete NP case for direct production or not?

B-physics anomalies might be the manifestation of a new short-distance interaction violating Lepton Flavor Universality.

Growing significance of LFUV in $b \rightarrow sll$;

Hard to imagine everything is a fluctuation. In any case, we'll find out!

Data in $b \rightarrow c$ imply large effects in many observables just around the corner. Need experimental corroboration to guide us:

Th: model building for $b \rightarrow sll$ is *very different* from that for $b \rightarrow sll$ and $b \rightarrow c\tau\nu$ without $R_{D^{(*)}}$ no obvious connection flavor anomalies - flavor hierarchies Exp: is there a concrete NP case for direct production or not?

Looking forward to the plenty upcoming measurements from both the energy and intensity frontiers!