New physics searches with the ILD detector at the ILC

Mikael Berggren¹

on behalf of the ILD concept group

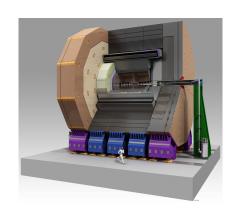
¹DESY, Hamburg

PANIC2021, Online, September, 2021

CLUSTER OF EXCELLENCE
OUANTUM UNIVERSE

The ILC strong points for searches

- e^+e^- collider with E_{CMS} = 250 500 (- 1000) GeV, and polarised beams
- e^+e^- means EW-production \Rightarrow Low background.
 - Detectors w/ $\sim 4\pi$ coverage.
 - Rad. hardness not needed: only few % X₀ in front of calorimeters.
 - No trigger
- e^+e^- means colliding point-like objects \Rightarrow initial state known
- 20 year running \rightarrow 2 ab⁻¹ @ 250 GeV, 4 ab⁻¹ @ 500 GeV.
- Construction under political consideration in Japan.


The ILD concept (arXiv:2003.01116)

Physics requirements, SM and BSM:


- $\sigma(1/p_{\perp}) = 2 \times 10^{-5} \text{ GeV}^{-1}$
- JER \sim 3-4%
- $\sigma(d_0) < 5\mu$
- particle Id (PID)
- hermeticity down to 5 mrad
- triggerless operation.

Leads to key features of the detector:

- low mass tracker with PID:
 - Main device: TPC
 - Enhanced by silicon
- High granularity calorimeters optimised for particle flow
- Power-pulsing.

- SUSY:
 - The most complete theory of BSM.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Under some stress(?) by LHC. However, ILC offers
 - Loop-hole free searches.
 - Complete coverage of Compressed spectra the most interesting case
- + A few slides on non-SUSY BSMs...
- Won't mention Dark Matter: Listen to Filip Zarnecki's talk after the break!

- SUSY:
 - The most complete theory of BSM.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Under some stress(?) by LHC. However, ILC offers
 - Loop-hole free searches.
 - Complete coverage of Compressed spectra the most interesting case.
- + A few slides on non-SUSY BSMs...
- Won't mention Dark Matter: Listen to Filip Zarnecki's talk after the break!

- SUSY:
 - The most complete theory of BSM.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Under some stress(?) by LHC. However, ILC offers
 - Loop-hole free searches.
 - Complete coverage of Compressed spectra the most interesting case.
- + A few slides on non-SUSY BSMs...
- Won't mention Dark Matter: Listen to Filip Zarnecki's talk after the break!

- SUSY:
 - The most complete theory of BSM.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Under some stress(?) by LHC. However, ILC offers
 - Loop-hole free searches.
 - Complete coverage of Compressed spectra the most interesting case.
- + A few slides on non-SUSY BSMs...
- Won't mention Dark Matter: Listen to Filip Zarnecki's talk after the break!

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

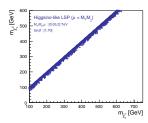
- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

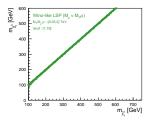
SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

SUSY: What do we know?

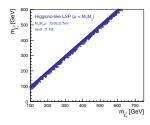

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

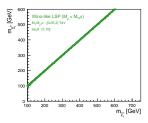

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

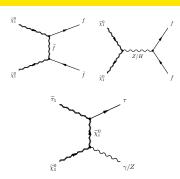
•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM
 - Need balance between early universe production and decay
 - One compelling option is
 [∓] Co-annihilation. For this to
 contribute: Early universe density c
 [∓] and χ₁⁰ similar ⇒ Compressed
 spectrum

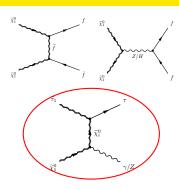


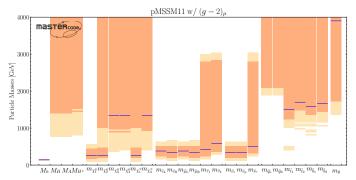


- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

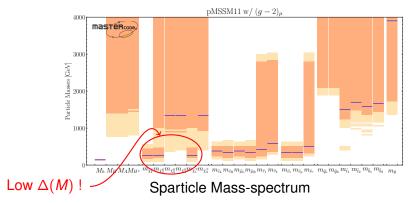

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM
 - Need balance between early universe production and decay
 - One compelling option is $\hat{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\hat{\tau}$ and $\hat{\chi}_1^0$ similar \Rightarrow Compressed

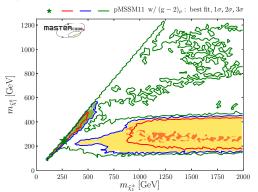



- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM.
 - Need balance between early universe production and decay.
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino:
 - Natural SUSY: $m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM.
 - Need balance between early universe production and decay.
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum.

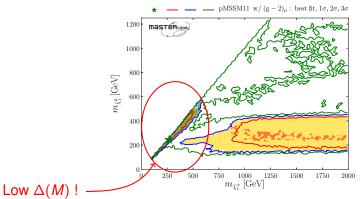


pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):



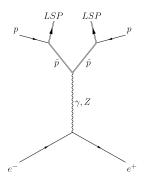
Sparticle Mass-spectrum

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):



pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

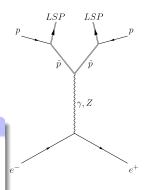
$$M_{{\widetilde \chi}_1^\pm}$$
 - $M_{{\widetilde \chi}_1^0}$ plane


pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

 $M_{{ ilde \chi}_1^\pm}$ - $M_{{ ilde \chi}_1^0}$ plane

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

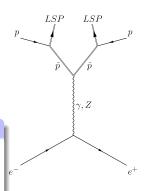


SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

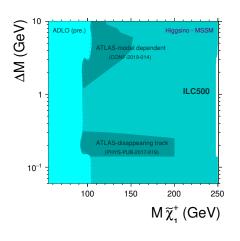
So, at ILC:

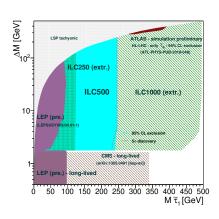
- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!



SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.


So, at ILC:


- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!

ILC projection for Higgsino or $\tilde{\tau}$ NLSP

From arXiv:2002.01239

From arXiv:2105.08616

ILC projection for Higgsino or $\tilde{\tau}$ NLSP

From arXiv:2002.01239 LAM [GeV] I SP tachyonic ∆M (GeV) ADLO (pre.) Higgsino - MSSM ILC250 (extr.) ATLAS-model dependent (CONF-2019-014) vtr.) Note: Discovery and Exclusion are almost the same! Close to complete coverage of compressed spectra! LEP (pre.) - long-lived 100 150 200 250 300 350 10^{-1} 400 450 500 M τ₁ [GeV]

From arXiv:2105.08616

100

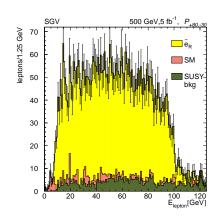
150

200

 $M \widetilde{\chi}^{+} (GeV)$

250

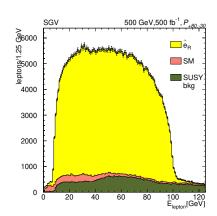
ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC}}$ 76,183 (2016)), after:


- \bullet 5 fb⁻¹ \approx 1 week
- and
 - 500 fb⁻¹ \approx 2 years.

ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC}}$ 76,183 (2016)), after:

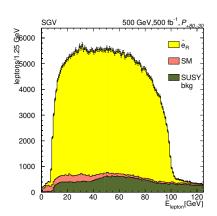
• 5 fb⁻¹ \approx 1 week

and


• 500 fb⁻¹ \approx 2 years.

ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC 76,183 (2016)}}$), after:

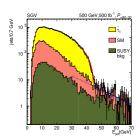
 \bullet 5 fb⁻¹ \approx 1 week and

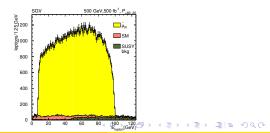

• 500 fb $^{-1} \approx$ 2 years.

ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC}}$ 76,183 (2016)), after:

 \bullet 5 fb⁻¹ \approx 1 week and

• 500 fb⁻¹ \approx 2 years.

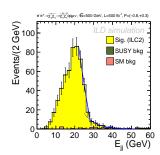

ILD detector simulation studies:

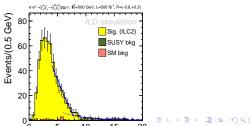

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim)

(Phys Rev D 101,095026 (2020))

 Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

(EPJC 73,2660 (2013))

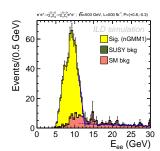

ILD detector simulation studies:

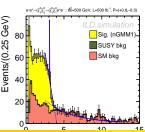

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate \(\Delta M\) (FullSim)

(Phys Rev D 101,095026 (2020))

 Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

(EPJC 73,2660 (2013))

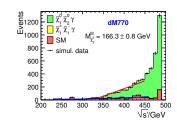

ILD detector simulation studies:

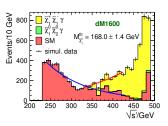

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim)

(Phys Rev D 101,095026 (2020))

 Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

(EPJC 73,2660 (2013))

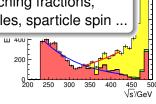




ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim)
 (Phys Rev D 101,095026 (2020))
- Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

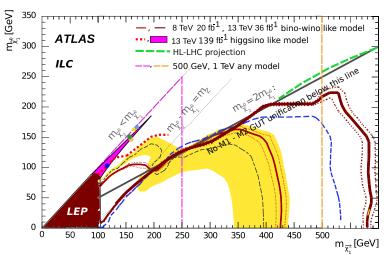
```
(EPJC 73,2660 (2013))
```



ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPDIC
- Typical chargin In all cases:
- ... and typical r signal, higgsing with moderate (Phys Rev D 101,0950
- SUSY masses to sub-percent
- Cross-sections to few percent
- Also: Branching fractions, mixing angles, sparticle spin ...
- Typical chargino/πευιταιιπο signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

(EPJC 73,2660 (2013))

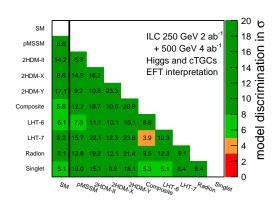


66.3 ± 0.8 GeV

√s'/GeV

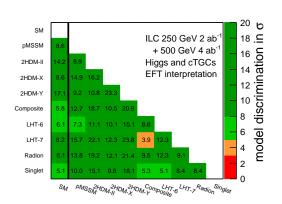
300

SUSY bosinos - All-in-one

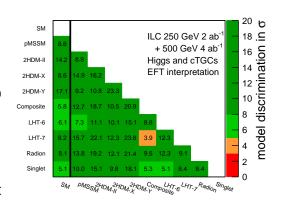


ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arxiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1

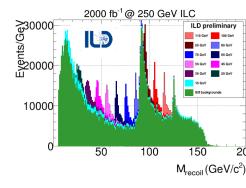

Other BSM: a gallery

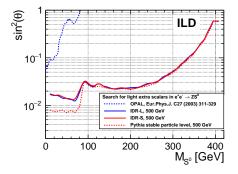
- BSM discovery and model separation from indirect searches.
- SMEFT study using ILC results on Higgs properties and TGCs (Phys. Rev. D 97,0535003 (2018)
- Select models that are not discoverable at HL-LHC.
- At ILC: Both separate at 5 σ from the SM, but also from eachother!


Other BSM: a gallery

- BSM discovery and model separation from indirect searches.
- SMEFT study using ILC results on Higgs properties and TGCs (Phys. Rev. D 97,0535003 (2018))
- Select models that are not discoverable at HL-LHC.
- At ILC: Both separate at 5 σ from the SM, but also from eachother!

Other BSM: a gallery

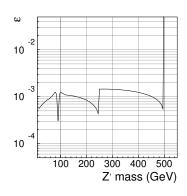

- BSM discovery and model separation from indirect searches.
- SMEFT study using ILC results on Higgs properties and TGCs (Phys. Rev. D 97,0535003 (2018))
- Select models that are not discoverable at HL-LHC.
- At ILC: Both separate at 5 σ from the SM, but also from eachother!


- A new Higgs-like scalar (S, produced in $e^+e^- \rightarrow Z^* \rightarrow ZS$ with unknown decays ?
- Search for it in a decay-mode insensitive way: The recoil-mass, i.e. the mass of the system recoiling against the measured Z.
- Example peaks for a coupling equal to the an SM-Higgs at the same mass. (arXiv:2005.06265)
- ⇒ exclude couplings down to a few percent of the SM-Higgs equivalent.
- Note importance of FullSim!

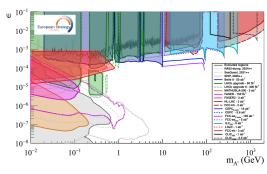
- A new Higgs-like scalar (S, produced in $e^+e^- \rightarrow Z^* \rightarrow ZS$ with unknown decays ?
- Search for it in a decay-mode insensitive way: The recoil-mass, i.e. the mass of the system recoiling against the measured Z.
- Example peaks for a coupling equal to the an SM-Higgs at the same mass. (arXiv:2005.06265)
- ⇒ exclude couplings down to a few percent of the SM-Higgs equivalent.
- Note importance of FullSim!

- A new Higgs-like scalar (S, produced in $e^+e^- \rightarrow Z^* \rightarrow ZS$ with unknown decays ?
- Search for it in a decay-mode insensitive way: The recoil-mass, i.e. the mass of the system recoiling against the measured Z.
- Example peaks for a coupling equal to the an SM-Higgs at the same mass. (arXiv:2005.06265)
- ⇒ exclude couplings down to a few percent of the SM-Higgs equivalent.
- Note importance of FullSim!

4 □ → 4 □ → 4 □ → 4 □ → 5 □ □ € 0 0 0


Dark photon/Z':

$$-rac{\epsilon}{2\cos heta_W}F'_{\mu
u}B^{\mu
u}$$


- A tiny, narrow resonance, but still wide enough to make decays prompt.
- \Rightarrow Look for a $\mu\mu$ resonance above background in $e^+e^- \rightarrow Z' + ISR \rightarrow$ $\mu^+\mu^- + ISR$
- Theory study, but with reasonable assumption on resolution. FullSim

- Dark photon/Z':
 - $-rac{\epsilon}{2\cos heta_W}F'_{\mu
 u}B^{\mu
 u}$
- A tiny, narrow resonance, but still wide enough to make decays prompt.
- \Rightarrow Look for a $\mu\mu$ resonance above background in $e^+e^- \rightarrow Z' + ISR \rightarrow \mu^+\mu^- + ISR$.
- Theory study, but with reasonable assumption on resolution. FullSim study is W.I.P.

- Dark photon/Z':
 - $-rac{\dot{\epsilon}}{2\cos heta_W}F'_{\mu
 u}B^{\mu
 u}$
- A tiny, narrow resonance, but still wide enough to make decays prompt.
- \Rightarrow Look for a $\mu\mu$ resonance above background in $e^+e^- \rightarrow Z' + ISR \rightarrow \mu^+\mu^- + ISR$.
- Theory study, but with reasonable assumption on resolution. FullSim study is W.I.P.

compared to others (from EPPSU).

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors like ILD, factors more precise, hermetic, and with no need for triggering
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low $\Delta(M)$. If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements. This input might be just what is needed for LHC to transform a 3 σ excess to discovery of states beyond the reach of ILC.
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.
- For more on Dark matter at ILC: Please listen to Filip Zarnecki's talk just after the break!

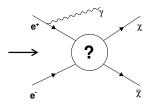
Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors like ILD, factors more precise, hermetic, and with no need for triggering
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low $\Delta(M)$. If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements. This input might be just what is needed for LHC to transform a 3 σ excess to a discovery of states beyond the reach of ILC.
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.
- For more on Dark matter at ILC: Please listen to Filip Zarnecki's talk just after the break!

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors like ILD, factors more precise, hermetic, and with no need for triggering
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low $\Delta(M)$. If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements. This input might be just what is needed for LHC to transform a 3 σ excess to a discovery of states beyond the reach of ILC.
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.
- For more on Dark matter at ILC: Please listen to Filip Zarnecki's talk just after the break!

Thank You!



Backup

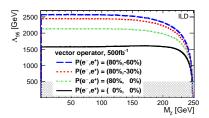
BACKUP SLIDES

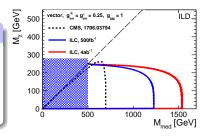
Only WIMPs

- What if this is the only accessible NP?
- Search for direct WIMP pair-production at collider: Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing" ⇒ Mono-X search.
 - At ILC: $e^+e^- \rightarrow \chi \chi \gamma$, ie. X is a γ

- ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis,in preparation.
- Model-independent Effective operator approach to "?"
 - Analyse as an effective four-point interaction. Strength = Λ .
 - Allowable if direct observation the mediator is beyond reach. Mostly true at ILC, but not at LHC!
 - Write down all possible Lorentz-structures of the operators.
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

ILC and LHC exclusion


- Examples:
 - Vector operator ("spin independent"), Note how
- useful beam-polarisation is!


 At LHC, EffOp can't be used

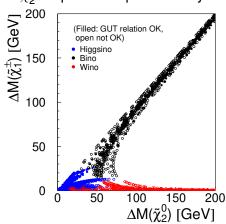
 ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- LHC: coupling to hadrons,
 ILC: coupling to leptons.
- LHC has best M_{χ} reach, ILC best M_{med} reach

Aspects of the spectrum

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

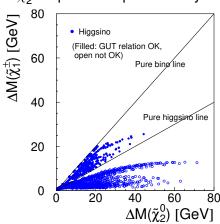

• Three regions:

 Bino: Both the same, but can be anything.

 $\bullet \ \, \text{Wino:} \ \, \Delta_{\widetilde{\chi}_1^\pm} \ \, \text{small, while} \ \, \Delta_{\widetilde{\chi}_2^0} \\ \text{can be anything.}$

Higgsino: Both often small

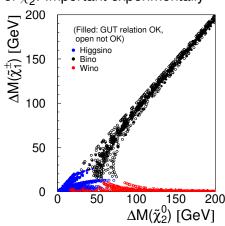
 But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino



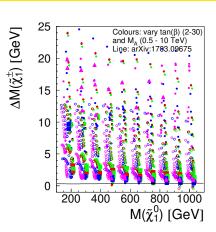
Aspects of the spectrum

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

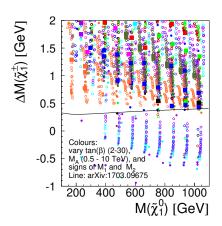
- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\widetilde{\chi}_1^\pm}$ small, while $\Delta_{\widetilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino.

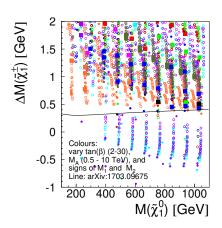


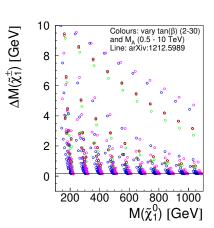
Aspects of the spectrum

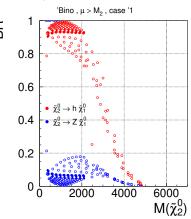

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\widetilde{\chi}_1^\pm}^\pm$ small, while $\Delta_{\widetilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino.

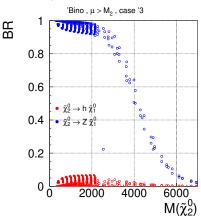



- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.

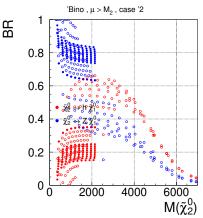

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.


- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.

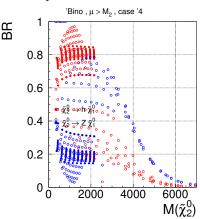
- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.



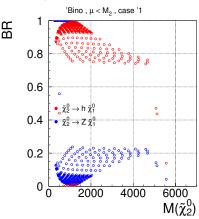
- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- \bullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots not the union!



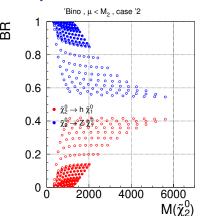
- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots not the union!



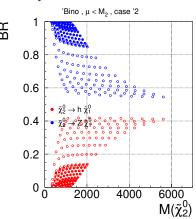
- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- \bullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots not the union!



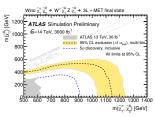
- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

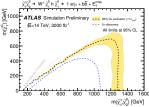


- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- $\bullet \ \, \text{or} \, \, \mu < \textit{M}_{\textrm{2}}$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!



- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- $\bullet \ \, \text{or} \, \, \mu < \textit{M}_{\textrm{2}}$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!





- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

