

CP-violation studies of hyperon-antihyperon pairs with BESIII

Motivation

BESIII Experiment

Results Single Weak Decays

New Result: *First Weak Phase Measurement in Baryon Decays*

Summary and Outlook

Display of simulated $\overline{z}^-\overline{\overline{z}}^+ \to \Lambda \pi^- \overline{\Lambda} \pi^+ \to p \pi^- \pi^- \overline{p} \pi^+ \pi^+$

Motivation

We have known about CP violation (CPV) more than 50 years. Only confirmed in meson decays

SM CPV not sufficient to explain observed matter-antimatter asymmetry

Baryogenesis requires C and CP violating processes*

Understanding CPV in flavour sector requires systematical mapping with different hadronic systems and complementary methods

*A. D. Sakharov, J. Exp. Theor. Phys. Lett. 5, 24

Strangeness $\Delta S = 1$

MESONS:

In strange sector a precise probe is $\Delta S = 1$ direct CPV (ε ') relative to indirect CPV (ε) in $K_{S,L} \rightarrow \pi\pi$ decays

 $(\varepsilon'/\varepsilon)_{EXP} = (16.6 \pm 2.3) \times 10^{-4} *$

 $(\varepsilon'/\varepsilon)_{SM} = (17.4 \pm 6.1) \times 10^{-4} + (\varepsilon'/\varepsilon)_{BSM} = (-4 - +10) \times 10^{-4} **$

SM calculation partial cancellation of QCD and EW penguins

BARYONS:

Hyperon non-leptonic two-body weak decays tests $\Delta S = 1$ CP

Recent methodological breakthrough

* Phys. Lett. B544 (2002) 97–112; 0909.2555 [hep-ex] ** *Eur. Phys. J. C* 80 (2020) 8, 705

Polarisation of hyperons experimentally accessible in weak parity violating decays.

They are *self analysing*: daughter particles are emitted according to polarisation of mother hyperon

Example: Angular distribution of $\Lambda o p\pi^-$

Test of CP via A_{CP}

If CP conservation holds then $\alpha = -\overline{\alpha}$

This test not limited only to $\Lambda \rightarrow p\pi^-$ but all non-leptonic two-body weak decays

Multipurpose detector with very good resolution, near 4π angular coverage

- Symmetric particle anti-particle conditions
- e⁺e⁻ experiment low hadronic background
- Controlled systematic uncertainties

World's largest charmonia data sample and full baryon-antibaryon octet kin. accessible

Polarisation

When initial state is unpolarised and process is parity conserving, final state particles polarized perpendicular to production plane

Polarisation is production related, depending both on CMS energy and scattering angle

A non-zero polarisation has important consequences for possibility to perform CP tests in single weak decays

 $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda \rightarrow p\pi^- + c.c.$ **RES**T

First measurement of hyperon polarization at J/ψ resonance

Non-zero $\Delta \Phi$ allows for direct and precise measurements of asymmetry parameters PANIC Sep. 8, 2021

The $\alpha(\Lambda \rightarrow p\pi^{-})$

VALUE		EVTS	;	DOCUMENT ID		TECN	COMMENT
0.732 ± 0.014		OUR	AVERAGE Error i	ncludes scale facto	or of 2.3.		
0.750 ±0.009 ±	0.004	420k		ABLIKIM	2019BJ	BES3	J/ψ to $\Lambda\Lambda$
0.721 ±0.006 ±	0.005		1	IRELAND	2019	CLAS	K production
· · · We do not	t use th	e following data fo	r averages, fits, lim	its, etc. • • •			
0.584 ±0.046		8500		ASTBURY	1975	SPEC	
0.649 ±0.023		1032	5	CLELAND	1972	OSPK	
0.67 ±0.06		3520		DAUBER	1969	HBC	From <i>Ξ</i> decay
0.645 ±0.017		1013)	OVERSETH	1967	OSPK	Λ from π^-p
0.62 ± 0.07		1156		CRONIN	1963	CNTR	A from $\pi^- p$
¹ This is a new constraints. Beferences	w analy	vsis based on exist	ing kaon photoproc	luction data of the	CLAS collab	oration and u	sing spin algebra
ABLIKIM 20	19BJ	NATP 15 631					
IRELAND	2019	PRL 123 182301	Kaon Photoprodu	ction and the Λ De	cay Parame	ter α_{-}	
ASTBURY	1975	NP B99 30	Measurement of t and R in the Back	he Differential Cross ward Peak of $\pi^- p$	ss Section at $\rightarrow K^0 \Lambda$ at 5	nd the Spin C GeV/c	orrelation Parameters P, A,
CLELAND	1972	NP B40 221	A Measurement o	f the β -Parameter i	in the Charg	ed Nonlepton	ic Decay of the Λ^0 Hyperor
DAUBER	1969	PR 179 1262	Production and D	ecay of Cascade H	lyperons		
OVERSETH	1967	PRL 19 391	Time Reversal Invariance in Λ Decay				

BESIII $\alpha_{\Lambda} = 0.750 \pm 0.009_{stat} \pm 0.004_{syst}^*$

Re-measurement using CLAS data, $\alpha_{\Lambda} = 0.721 \pm 0.006_{stat} \pm 0.005_{syst}^{**}$

 $\alpha_{\Lambda,PDG} = 0.732 \pm 0.014_{tot}$ based on the two mutually incompatible values

* BESIII, Nature Physics 15 (2019) 631 ** Phys. Rev. Lett. 123 (2019) 18, 182301 More input needed!

BESIII, Nature Physics 15 (2019) 631

$$A_{CP,\Lambda} = \frac{\alpha_{\Lambda} + \overline{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \overline{\alpha}_{\Lambda}} = -0.006 \pm 0.012_{stat} \pm 0.007_{syst}$$
$$-3 \times 10^{-5} \le A_{\Lambda SM} \le 4 \times 10^{-5*} \qquad A_{CP,\Lambda prev} = 0.013 \pm 0.021_{tot}^{**}$$

Most precise test of CP for Λ and compatible with SM expectations

*. Phys. Rev. D67, 056001 (2003) ** Phys Rev C54, 1877 (1996)

First CP measurement for any Σ decay

$$A_{CP\Sigma} = \frac{\alpha_{\Sigma} + \alpha_{\overline{\Sigma}}}{\alpha_{\Sigma} - \alpha_{\overline{\Sigma}}} = -0.004 \pm 0.037_{stat} \pm 0.010_{syst}$$

 $A_{CP \Sigma SM} 3.6 \times 10^{-6} **$

* Phys.Rev.Lett. 125 (2020) 5, 052004 ** Phys. Rev. D67, 056001 (2003)

Weak phases and CP-symmetry tests in sequential decays of entangled double-strange baryons arXiv:2105.11155

From decay amplitudes one can construct CP-odd decay parameters α_{Ξ} , β_{Ξ} , γ_{Ξ}

$$S = |S|e^{i\delta_{S}}e^{i\xi_{S}} P = |P|e^{i\delta_{P}}e^{i\xi_{P}}$$
$$\bar{S} = -|\bar{S}|e^{i\delta_{S}}e^{-i\xi_{S}} P = |P|e^{i\delta_{P}}e^{-i\xi_{P}}$$

Under assumption that isospin 1/2 transitions dominate

$$A_{CP}^{\Xi} = \frac{\alpha_{\Xi} + \alpha_{\overline{\Xi}}}{\alpha_{\Xi} - \alpha_{\overline{\Xi}}} \approx -\tan(\delta_{P} - \delta_{S})\tan(\xi_{P} - \xi_{S})$$

strong phase diff weak phase diff

* Phys. Rev Lett 55 162 (1985)

$$A_{CP}^{\Xi} = \frac{\alpha_{\Xi} + \overline{\alpha}_{\Xi}}{\alpha_{\Xi} - \overline{\alpha}_{\Xi}} \approx -\sin \phi_{\Xi} \frac{\sqrt{1 - \alpha_{\Xi}^{2}}}{\alpha_{\Xi}} \tan(\xi_{P} - \xi_{S}) *$$
$$\Delta \phi_{CP} = \frac{\phi_{\Xi} + \overline{\phi}_{\Xi}}{2} \approx \cos \phi_{\Xi} \frac{\alpha_{\Xi}}{\sqrt{1 - \alpha_{\Xi}^{2}}} \tan(\xi_{P} - \xi_{S}) *$$

weak phase diff

 $\Delta \phi_{CP}$ more sensitive to CP-violating effects compared to A_{CP}^{Ξ} . Proposed more 35 years ago but not measured until now!

* Phys. Rev Lett 55 162 (1985)

Formalism sequential weak decays

The formalism exploits polarisation, entanglement and sequential decays * **

$$\mathcal{W}(\boldsymbol{\xi};\boldsymbol{\omega}) = \sum_{\mu,\nu=0}^{3} \underbrace{\mathcal{C}_{\mu\nu}}_{\mu'\nu'=0} \sum_{\mu'\nu'=0}^{3} a_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\overline{\Xi}} a_{\mu'0}^{\Lambda} a_{\nu'0}^{\overline{\Lambda}}$$

- Nine-dimensional phase space given by nine helicity angles
- Eight free parameters determined by maximum log likelihood method:
 α_ψ, ΔΦ, α_Ξ, α_Ξ, φ_Ξ, φ_Ξ, α_Λ, α_Λ
 ↑ ↑ ↑ ↑
 not measured before

* Phys. Rev. D 99, 056008 (2019) ** Phys. Rev. D 100, 114005 (2019)

Analysis summary

arXiv:2105.11155

Results based on $1.3 \times 10^9 J/\psi$ events

73 200 exclusively measured $\Xi^-\overline{\Xi}^+ \rightarrow \Lambda \pi^-\overline{\Lambda}\pi^+$ events

Very low level of background

Systematic uncertainties are small, mainly from selection criteria

Parameter	This work	Previous result
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ *
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	_
α_{Ξ}	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010 **
φΞ	$0.011 \pm 0.019 \pm 0.009~rad$	-0.037 ± 0.014 rad **
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-
$\overline{\varphi}_{\Xi}$	$-0.021\pm0.019\pm0.007~rad$	_
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$ ***
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$ ***
$\xi_P - \xi_S$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad	-
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~\rm{rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ rad ****
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6) imes10^{-3}$	
$\Delta \phi_{CP}^{\Xi}$	$(-4.8 \pm 13.7 \pm 2.9) \times 10^{-3}$ rad	I –
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm12\pm7) imes10^{-3}$ ***
$\langle \phi_\Xi \rangle$	$0.016 \pm 0.014 \pm 0.007~{\rm rad}$	22 22

First measurement of polarisation First direct determination of all $\Xi^-\overline{\Xi}^+$ decay parameters

Previous experiments determined product $\boldsymbol{\alpha}_{\boldsymbol{\Xi}} \boldsymbol{\alpha}_{\boldsymbol{\Lambda}}$

* PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Parameter	This work	Previous result
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$ *
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	_
α_{Ξ}	$-0.376\pm0.007\pm0.003$	-0.401 ± 0.010 **
φΞ	$0.011 \pm 0.019 \pm 0.009$ rad	-0.037 ± 0.014 rad **
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	1771
$\overline{\varphi}_{\Xi}$	$-0.021\pm0.019\pm0.007~{\rm rad}$	<u> </u>
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$ ***
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$ ***
$\xi_P - \xi_S$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad	-
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ rad ****
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	_
$\Delta \phi_{CP}^{\Xi}$	$(-4.8 \pm 13.7 \pm 2.9) \times 10^{-3}$ ra	ıd –
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm12\pm7)\times10^{-3}$ ***
$\left< \varphi_{\Xi} \right>$	$0.016 \pm 0.014 \pm 0.007~rad$	

First direct determination of all $\Xi^-\overline{\Xi}^+$ decay parameters

Previous experiments determined product $\alpha_{\Xi} \alpha_{\Lambda}$

Independent measurement of Λ decay parameters. Excellent agreement with previous BESIII results. Similar precision despite 6x smaller data sample

* PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Parameter	This work	Previous result	
α	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	*
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	_	
αΞ	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010	**
φΞ	$0.011 \pm 0.019 \pm 0.009$ rad	-0.037 ± 0.014 rad	**
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-	
$\overline{\Phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007$ rad	<u> </u>	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	***
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$	***
$\xi_P - \xi_S$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad	_	
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~{\rm rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ rad	1 ****
A_{CP}^{Ξ}	$(6.0 \pm 13.4 \pm 5.6) \times 10^{-3}$	_	
$\Delta \phi_{CP}^{\Xi}$	$(-4.8 \pm 13.7 \pm 2.9) \times 10^{-3}$ rad	_	
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm 12\pm 7)\times 10^{-3}$	***
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad		6.0
0.000000000000000000000000000000000000			

First extraction of weak phase diff for any weakly decaying baryon $(\xi_p - \xi_s) =$ $(1.2 \pm 3.4 \pm 0.8) \times 10^{-2} \text{ rad}$ Consistent with SM expectation $(\xi_p - \xi_s)_{SM} =$ $(1.8 \pm 1.5) \times 10^{-4} \text{ rad}$

New method for direct weak phase extraction!

* PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Parameter	This work	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	*
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376\pm0.007\pm0.003$	-0.401 ± 0.010	**
φ_{Ξ}	$0.011 \pm 0.019 \pm 0.009~rad$	-0.037 ± 0.014 rad	**
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$		
$\overline{\varphi}_{\Xi}$	$-0.021\pm0.019\pm0.007~rad$	_	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	***
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$	***
$\xi_P - \xi_S$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad		
$\delta_{P}-\delta_{S}$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~rad$	$(10.2 \pm 3.9) \times 10^{-2}$ r	ad ****
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$		
$\Delta \phi_{CP}^{\Xi}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~\rm rad$	-	
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm12\pm7)\times10^{-3}$	***
$\langle \phi_{\Xi} \rangle$	$0.016 \pm 0.014 \pm 0.007~{\rm rad}$		20

First extraction of weak phase diff for *any* weakly decaying baryon

 $(\xi_p - \xi_s) =$ (1.2 ± 3.4 ± 0.8)×10⁻² rad

Consistent with SM expectation $(\xi_p - \xi_s)_{SM} =$ $(1.8 \pm 1.5) \times 10^{-4}$ rad

New method for direct weak phase extraction! Three independent CP-tests in *single* measurement

* PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Parameter	This work	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	*
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376\pm0.007\pm0.003$	-0.401 ± 0.010	**
φ_{Ξ}	$0.011 \pm 0.019 \pm 0.009~rad$	-0.037 ± 0.014 rad	**
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$		
$\overline{\varphi}_{\Xi}$	$-0.021\pm0.019\pm0.007~rad$	_	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	***
$\overline{\alpha}_{\Lambda}$	$-0.763\pm0.011\pm0.007$	$-0.758\pm0.010\pm0.007$	***
$\xi_P - \xi_S$	$(1.2\pm3.4\pm0.8)\times10^{-2}$ rad	_	
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~rad$	$(10.2 \pm 3.9) \times 10^{-2}$ ra	d ****
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	-	
$\Delta \phi_{CP}^{\Xi}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-	
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm 12\pm 7)\times 10^{-3}$	***
$\langle \phi_\Xi \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad		62

We obtain the same precision for ϕ as HyperCP with *three orders of magnitude* smaller data sample!

 $\phi_{\Xi,HyperCP} = -0.042 \pm 0.011 \pm 0.011$ $\langle \phi_{\Xi} \rangle = 0.016 \pm 0.014 \pm 0.007$

> * PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Parameter	This work	Previous result	
α_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	*
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016$ rad	-	
α_{Ξ}	$-0.376\pm0.007\pm0.003$	-0.401 ± 0.010	**
φ_{Ξ}	$0.011\pm 0.019\pm 0.009~rad$	-0.037 ± 0.014 rad	**
$\overline{\alpha}_{\Xi}$	$0.371 \pm 0.007 \pm 0.002$	-	
$\overline{\varphi}_{\Xi}$	$-0.021\pm0.019\pm0.007~rad$	_	
α_{Λ}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	***
$\overline{\alpha}_{\Lambda}$	$-0.763 \pm 0.011 \pm 0.007$	$-0.758\pm0.010\pm0.007$	***
$\xi_P - \xi_S$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad	-	
$\delta_P - \delta_S$	$(-4.0\pm3.3\pm1.7)\times10^{-2}~\rm{rad}$	$(10.2 \pm 3.9) \times 10^{-2}$ ra	d ****
$A_{\rm CP}^{\Xi}$	$(6.0\pm13.4\pm5.6)\times10^{-3}$	_ 1	
$\Delta \phi_{CP}^{\Xi}$	$(-4.8\pm13.7\pm2.9)\times10^{-3}~rad$	-	
$A^{\Lambda}_{\mathrm{CP}}$	$(-3.7\pm11.7\pm9.0)\times10^{-3}$	$(-6\pm 12\pm 7)\times 10^{-3}$	***
$\langle \phi_\Xi \rangle$	$0.016 \pm 0.014 \pm 0.007$ rad		62

We obtain the same precision for ϕ as HyperCP with *three orders of magnitude* smaller data sample!

 $\phi_{\Xi,HyperCP} = -0.042 \pm 0.011 \pm 0.011$ $\langle \phi_{\Xi} \rangle = 0.016 \pm 0.014 \pm 0.007$

Our strong phase measurement compatible with SM. In tension with HyperCP

	2			
* PRD 93, 072003 (2018)				
** PDG 2020				
*** Nat. Ph. 15, 631 (2019)				
**** PRL 93, 011802 (2004)				

26

BESIII has rich program of testing CP from comparing hyperon and antihyperon decays

We have presented a novel model-independent method that exploits spin entanglement in the sequential weak decay chain $\Xi^- \to \Lambda \pi^-$, $\Lambda \to p \pi^-$

First measurement of weak phase difference for any baryon decay

 $\Delta \phi_{CP}$ tests CP without (the strong phase) suppression factor present in A_{CP} tests.

The benefits of using entangled pairs can be adopted by other experiments e.g. PANDA, BELLE-II and Super-charm τ factories

BESIII recently collected 1.0 x $10^{10} J/\psi$ events. More results to be expected in future!

Thank you for your attention!

Spare slide

PANIC Sep. 8, 2021

Analysis steps

arXiv:2105.11155

at least one proton, one anti-proton, two positively and two negatively charged pion candidates

momentum criteria used to select proton (p > 0.32 GeV/c) and pion (p < 0.30 GeV/c) candidates

 Λ and Ξ candidates formed with succesful vertex fits

Mass windows $|m(p\pi) - m_{\Lambda}| < 11.5 \text{ MeV/}c^2$ and $|m(\Lambda\pi) - m_{\Xi}| < 12.0 \text{ MeV/}c^2$

4C-kinematic fit on the hypothesis $e^+e^- \rightarrow J/\Xi \rightarrow \Xi^-\overline{\Xi}^+$ is used as veto

The decay lengths of Λ and Ξ candidates greater than 0.

For improved data-MC consistency only events with $|\cos\theta| < 0.84$