Tests of discrete symmetries with the J-PET detector

Wojciech Krzemień On behalf of the J-PET collaboration

September 8th 2021

Outline

- Positronium properties and discrete symmetry tests
- J-PET detector setup
- Results
- Future prospects
 - Mirror Matter searches

Positronium

S. D. Bass, Acta Physica Polonica B 50, 1319 (2019)

Discrete symmetry tests with o-Ps → 3y decays

- Discrete symmetries are scarcely tested with leptonic systems
- Prominent results from neutrinos oscillation experiments
 - Dirac phase, δCP ~3σ level *[T2K, Nature 580 (2020) 339]*
- Electron EDM < 1.1x10⁻²⁹ [ACME, Nature 562 (2018) 355]
- Positronium the lightest leptonic state so far the only system of charged leptons used for test of CP and CPT

Discrete symmetry tests with o-Ps → 3y decays

- Discrete symmetries are scarcely tested with leptonic systems
- Prominent results from neutrinos oscillation experiments
 - Dirac phase, δCP ~3σ level [*T2K*, *Nature* 580 (2020) 339]
- Electron EDM < 1.1x10⁻²⁹ [ACME, Nature 562 (2018) 355]
- Positronium the lightest leptonic state so far the only system of charged leptons used for test of CP and CPT

How to can we test discrete symmetries in the positronium system

Searches for forbidden positronium decays

 Certain SME-based searches for CPT violation were proposed with positronium spectroscopy [Phys. Rev. D92 (2015) 056002]

Discrete symmetry tests with o-Ps → 3y decays

- Discrete symmetries are scarcely tested with leptonic systems
- · Prominent results from neutrinos oscillation experiments
 - Dirac phase, δCP ~3σ level [*T2K*, *Nature* 580 (2020) 339]
- Electron EDM < 1.1x10⁻²⁹ [ACME, Nature 562 (2018) 355]
- Positronium the lightest leptonic state so far the only system of charged leptons used for test of CP and CPT

How to can we test discrete symmetries in the positronium system

• Searches for forbidden positronium decays

 Certain SME-based searches for CPT violation were proposed with positronium spectroscopy [Phys. Rev. D92 (2015) 056002]

Searches for non-vanishing symmetry-odd correlations:

Discrete symmetry tests with angular correlations in o-Ps \rightarrow 3y decays

 $\left< \hat{O} \right> \stackrel{?}{=} 0$ for an odd operator $\Leftrightarrow \mathcal{CPT}(\hat{O}) = -1$ $\Leftrightarrow \mathcal{T}(\hat{O}) = -1$

 $|\vec{k}_1| > |\vec{k}_2| > |\vec{k}_3|$

	operator	С	Р	Т	CP	CPT
Using o-Ps spin →	$ec{S}\cdotec{k_1}$	+	-	+	-	-
	$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	-	+	-
Requires o-Ps tensor polarization	$(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$	+	-	-	-	+
	$ec{k_2}\cdotec{\epsilon_1}$	+	-	-	-	+
Using photon	$\cdot \qquad ec{S} \cdot ec{\epsilon_1}$	+	+	-	+	-
polarization	$ec{S} \cdot (ec{k}_2 imes ec{\epsilon}_1)$	+	-	+	-	-

[W. Bernreuther et al., Z. Phys. C41 (1988) 143]

[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

J-PET (Jagiellonian-PET TOMOGRAPHY)

First Positron Emission Tomography scanner built from plastic scintillator

- Multidisciplinary detector
- Whole-body PET
- •3 + 1 layer arrangement
 - 192 scintillator modules 7 × 19 × 500 mm 3 arranged in 3 layers read out by vacuum tube photomultipliers (PMs) with radius of 42.5 cm and length of 50 cm
 - 4-th layer modular JPET: 312 plastic scintillator strips in 24 modules with dimensions of 6 × 24 × 500 mm 3 read out by matrices of silicon photomultipliers (SiPM)

•High timing resolution

- •High acceptance and angular resolution
- •Trigger-less and reconfigurable DAQ system
 - Data has no filters: all data acquired is unfiltered
- GPS trilateration reconstruction

prof. Paweł Moskal

Session: Applications of nuclear and particle physics technology

Date and time: 8 Sep 2021, 13:30

Talk: "From tests of discrete symmetries to medical imaging with J-PET detector"

Reconstruction of o-ps decay vertex in J-PET

Symmetry tests with CPT-odd operator

Using o-Ps spin

		-			-
operator	С	Р	Т	СР	CPT
$ec{S}\cdotec{k_1}$	+	-	+	-	-
$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	-	+	-
$(ar{S}\cdotar{k_1})(ar{S}\cdot(ar{k_1} imes k_2))$	+	-	-	-	+
$ec{k}_2\cdotec{\epsilon}_1$	+	-	-	-	+
$ec{S}\cdotec{\epsilon}_1$	+	+	-	+	-
$ec{S} \cdot (ec{k}_2 imes ec{\epsilon}_1)$	+	-	+	-	-

[W. Bernreuther et al., Z. Phys. C41 (1988) 143]

Event-by event spin estimation

Using an extensive-size o-Ps production and annihilation medium

Evaluation of CPT-odd observable

Evaluated efficiencies using MC are symmetric in $\cos\theta$

$$\hat{S} \cdot (\vec{k}_1 imes \vec{k}_2) / |\vec{k}_1 imes \vec{k}_2| = cos heta$$

Standard asymmetry:

$$A = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \longrightarrow N_{+} \Leftrightarrow \cos\theta > 0$$

is generalized by the **mean value of cos9**:

$$\frac{\int N(\cos\theta)\cos\theta}{\int N(\cos\theta)}$$

J-PET is sensitive to the full range of this operator

Expected effect with CPT-asymmetric simulations

7.3 x 10⁶ o-ps candidates (26 days of data taking)

J-PET

$$\mathbf{O}_{\rm CPT} = \hat{S} \cdot (\vec{k}_1 \times \vec{k}_2) / |\vec{k}_1 \times \vec{k}_2| = \cos\theta$$

$$< \mathbf{O}_{\rm CPT} >= 0.00025 \pm 0.00036$$

Over a factor of three improvement Results limited by the statistical uncertainty

New data analysis ongoing

Neha Chug Session: Poster Session II Date and time: 7 Sep 2021, 18:10 Poster: "CPT symmetry test in positronium annihilations with the J-PET detector"

As by-product: First tomographic image of an object (anihilation chamber) using o-ps decays

New operators with photon polarizations

$$|ec{k}_1| > |ec{k}_2| > |ec{k}_3|$$

[W. Bernreuther et al., Z. Phys. C41 (1988) 143] [P. Moskal et al., Acta Phys. Polon. B47 (2016) 509] operator Ρ CP CPT С Т $\vec{S} \cdot \vec{k_1}$ + + $\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$ ++ +_ _

+

+

+

+

+

+

So far, No CP- violation was observed with a sensitivity of 2.2×10^{-3} . [T. Yamazaki et al., Phys. Rev. Lett. 104, 083401 (2010)]

 $(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$

 $\vec{k}_2 \cdot \vec{\epsilon}_1$

 $\vec{S} \cdot \vec{\epsilon}_1$

 $\vec{S} \cdot (\vec{k}_2 imes \vec{\epsilon}_1)$

$$\vec{\varepsilon}_i = \vec{k}_i \times \vec{k'}_i$$

Ē

Cosine α

+

+

╋

Expectation Value = 0.0003 +/- 0.0003 PRELIMINARY

Precision o-ps lifetime measurments and Mirror Matter searches

Mirror Matter search in o-PS with J-PET

• Weak interactions violates parity (P).

First experimental confirmations:

- C. S. Wu et al. Phys. Rev. 105 (1956) 1413
- R. L. Garwin, L. Lederman and R. Weinrich Phys. Rev. 104 (1956) 254
- Mirror Matter (or Alice Matter) was proposed as an explanation of Parity symmetry violation [T.D., Yang C. N. Phys. Rev. 1956. V. 104. P. 254.]
 - Each particle has a mirror partner with the same properties and opposite chirality (left/right handed)
 - Mirror particles interact with normal matter mainly through gravity → Dark Matter candidates
 - γ mirror γ ' interaction via kinetic mixing

$$\mathcal{L}_{\gamma\gamma'} = -\epsilon F^{\mu\nu} F'_{\mu\nu}$$

Ps pure leptonic system:

•Clean experimental system (no background)

•Lifetime accurately described with Quantum Electrodynamics (QED) theory

$$\Gamma(o - Ps \to 3\gamma, 5\gamma) = \frac{2(\pi^2 - 9)\alpha^6 m_e}{9\pi} \left[1 + A\frac{\alpha}{\pi} + \frac{\alpha^2}{3} \ln \alpha + B\left(\frac{\alpha}{\pi}\right)^2 - \frac{3\alpha^3}{2\pi} \ln^2 \alpha + C\frac{\alpha^3}{\pi} \ln \alpha + D\left(\frac{\alpha}{\pi}\right)^3 + \dots \right]$$

Acta Phys. Pol. B 50, 1319 (2019)

Theory prediction

 $\Gamma = 7.039979(11) \times 10^6 \,\mathrm{s}^{-1}$

Experimental values

$$\Gamma = 7.0401 \pm 0.0007 \times 10^{6} \, {
m s}^{-1}$$
 Tokyo group
Phys. Lett. B 671 (2009), p. 219

 $\Gamma = 7.0404 \pm 0.0010 \pm 0.0008 \times 10^6 \, {\rm s}^{-1}$ Ann Arbor group Phys. Rev. Lett. 90 (2003), p. 203402

Theory predictions 100 times more precise: 10⁻⁶ vs 10⁻⁴

Precise measurement of the o-Ps lifetime looking for hints of new physic

- Source activity 1 MBq = 10⁶ e⁺/s
- o-Ps formed in vacuum chamber with probability 29%
- Number of o-Ps after 2 years 10¹³ o-Ps formed Sensitivity below O(10⁻⁵) Photon mixing strength ε < O(10⁻⁷)

Main competitor ETH Zurich

- [Phys. Rev. D 97, 092008]
 - Slow positron beam (1.5 x 10⁴e⁺/s)

[arXiv:2006.07467 [physics.ins-det]]

Summary and Outlook

- Positronium atoms provide a good and clean test field for discrete symmetries in leptonic systems
- J-PET detector is capable of exclusive registration of o-Ps \rightarrow 3y annihilation events:
 - Full anihillation vertex reconstruction
 - Estimation of o-Ps spin on an event-by-event basis
 - o-Ps lifetime using the de-excitation photons emitted by the source
- Improvement of a factor more than 3 reached in CPT tests with the current data.
- Aims at an improved sensitivity for the CP and CPT symmetry tests ($\sim 10^{-5}$)
- Larger sensitivity reach with the inclusion of the modular 4th layer of the detector
- Precise measurement of the o-Ps lifetime in view of new Physics
 - Mirror matter as Dark Matter candidate

Thank you for your attention

prof. Paweł Moskal

Session: Applications of nuclear and particle physics technology

Date and time: 8 Sep 2021, 13:30

Talk: "From tests of discrete symmetries to medical imaging with J-PET detector"

Neha Chug
 Session: Poster Session II
 Date and time: 7 Sep 2021, 18:10
 Poster: "CPT symmetry test in positronium annihilations with the J-PET detector"

Backup Slides

Detector performance: angular resolution (o-Ps)

A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators Eur. Phys. J. C (2016) 76:445 DOI 10.1140/epic/s10052-016-429

Rejection of subsequent scattering in the detector

- Secondary Compton-scattered photons may be recorded by J-PET again
- For each pair of annihilation photon candidates *i* and *j* (*i*,*j*=1,2,3) the following figure is computed:

$$\delta t_{ij} = |d_{ij} - c\Delta t_{ij}| = ||\vec{r}_i - \vec{r}_j| - c(t_i - t_j)|$$

Distribution of the minimum δt_{ij} over all photon pair choices in a events:

Detector performance: energy resolution (o-Ps)

Positronium system

Acta Phys. Pol. B 50, 1319 (2019)

- Hamiltonian eigenstates of P, C, CP operators
- The lightest known atom and anti-atom
- The simplest atomic system with charge conjugation eigenstates.
- Electrons and positrons are the lightest leptons hence, they do not decay into lighter particles via weak interaction
- Weak interaction leads to the violation at the order of 10-14.

(M. Sozzi, Discrete Symmetries and CP Violation, Oxford University Press (2008))

- No charged particles in the final state (radiative corrections very small 2 * 10-10)
- Light by light contributions to various correlations are small

(B. K. Arbic et al., Phys. Rev. A 37, 3189 (1988)) (W. Bernreuther et al., Z. Phys. C 41, 143 (1988))

- Purely Leptonic state
- Breaking of T and CP was observed but only for processes involving quarks.
- So far, breaking of these symmetries was not observed for purely leptonic systems.
- 10-9 vs upper limits of 3 *10-3 for T, CP, CPT

(P.A. Vetter and S.J. Freedman, Phys. Rev. Lett. 91, 263401 (2003))(T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) 083401)

• 10-9 vs upper limits of 3*10-7 for C

[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

Operators for the o-Ps \rightarrow 3 γ process, and their properties with respect to the C, P, T, CP and CPT symmetries.

		operator	C	P	T	CP	CPT		
Using o-Ps spin		$ec{S}\cdotec{k_1}$	+	-	+	-	-		
		$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	-	+	-		
		$(ec{S}\cdotec{k_1})(ec{S}\cdot(ec{k_1} imesec{k_2}))$	+	-	-	-	+		
Using photon polarization		$ec{k}_2\cdotec{\epsilon}_1$	+	-	-	-	+		
		$ec{S}\cdotec{\epsilon_1}$	+	+	-	+	-		
Operators involving spin used in 1-PET		$ec{S} \cdot (ec{k}_2 imes ec{\epsilon_1})$	+	-	+	-	-		
Event-by-event spin estimation	using extensive annihilatio	n medium			→ .	→ .	. 		
$ec{S} \cdot (ec{k_1} imes ec{k_2})$ T & CPT-violation sensitive $ k_1 > k_2 >$						$ k_3 $			
$ec{S}\cdotec{k_1}$	CP-violation sensitive	$\hat{S} \cdot (ec{k}_1 imes ec{k}_2) / ec{k}_1$	$ imes ec k_2 $ =	$= cos \theta$			7		
ARTER STREET, SALES		Standard asymmetry: $\vec{k_3}$ $\vec{k_1}$							
	$A = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} N_{+} \Leftrightarrow \cos\theta > 0 \checkmark \vec{k_{2}}$								
	Effective polorizatio	is generalized by the me	ean value of cos9:						
	depends on o-Ps v	ertex $\int N(\cos\theta) \mathrm{d}$	$\frac{\partial}{\partial \cos \theta}$						
\vec{k}_2	resolution	resolution $\int N(\cos \theta)$							
	J-PET is sensitive to the full range of this operator								

J-PET (Jagiellonian-PET TOMOGRAPHY)

- •3 + 1 layer arrangement
 - 192 scintillator modules 7 × 19 × 500 mm 3 arranged in 3 layers read out by vacuum tube photomultipliers (PMs) with radius of 42.5 cm and length of 50 cm
 - 4-th layer modular JPET: 312 plastic scintillator strips in 24 modules with dimensions of 6 × 24 × 500 mm 3 read out by matrices of silicon photomultipliers (SiPM)
- •Novel digital front-end electronics probing signals at multiple thresholds
- •Trigger-less and reconfigurable DAQ system
- Annihilation gamma quanta hit time measurement: σ_t (0.511 MeV) ~ 125 ps
- •Gamma quanta energy resolution: $\sigma_{F}/E = 0.044/\sqrt{E(MeV)}$
- •Resolution of photon relative angles measurement ~ 1°
- •Possibility of o-Ps spin and photon polarization measurement
- •Increased detection efficiency and improved time resolution with layer 4

P. Moskal, D. Kisielewska et al. Phys. Med. Biol. 64 (2019) 055017

J-PET vs previous measurements

$\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$ $P_{e+} = \frac{v}{c} \cdot 0.686$

Limiting positron emission direction

1 Mbg β^+ emitter activity 4π detector but low angular resolution

Recording multiple geometrical configurations

-PET

e+ spin estimated event-by-event $P_{e+} \approx \frac{\upsilon}{2} \cdot 0.91$

Yamazaki et al. PRL 104 (2010) 083401

- $(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$
- $C_{CP} = (1.3\pm2.1\pm0.6) \times 10^{-3}$

Polarized o-Ps using external B field

Inclusive measurement Only certain angular configurations

- Plastic scintillators = fast timing \rightarrow using high β^+ emitter activity (tested up to 10 Mbq)
- Recording all 3 annihilation photons
- Angular resolution at 1° level

Results of the CPT test

oPs in JPET tomograph

Fig. 3 Simulated spectra of deposited energy in plastic scintillators for gamma quanta from $e^+e^- \rightarrow 2\gamma$ annihilation and for de-excitation gamma quanta originating from isotopes indicated in the legend. The spectra were simulated including the energy resolution of the J-PET detector [20] and were normalized to the same number of events

GPS trilateration

Figure 5: A scheme of the detector showing $o-Ps \rightarrow 3\gamma$ annihilation. For clarity only a single layer with registered hits is shown. Red lines represent the gamma photons from ortho-positronium annihilation. The trilateration method is used to determine the annihilation position and time (x', y', t) along the annihilation plane. For each recorded photon a circle, which is a set of possible photon origin points, centered in the hit-position and parameterised with the unknown o-Ps annihilation time is considered. The intersection of the three circles corresponds to the $o-Ps \rightarrow 3\gamma$ annihilation point.

Fig. 13 Pictorial illustration of the possible response of the detector to o-Ps $\rightarrow 3\gamma$ and e^+e^- annihilation into 2γ . Arranged circularly *squares* represents scintillator strips—*purple* and *green* colors indicate strips where the gamma quanta were or were not registered, respectively. The

arrows represents gamma quanta occurring in the events, while *dotted lines* indicate naively reconstructed gamma quanta. Examples of primary and secondary scatterings are depicted

Eur. Phys. J. C (2016) 76 :445

Mirror Matter in o-Ps

- o-Ps can be connected via one-photon annihilation to its mirror version (o-Ps') and can be confirmed in experiments
 - o-Ps oscillates into its mirror partner o-Ps'
 - Only mimicked by very-rare decay from Standard Model Br(oPs $\rightarrow v\overline{v}) < O(10^{-18})$
 - Precision measurements of the o-Ps decay rate and compare it to QED calculations.

The o-Ps' \rightarrow invisible decay would manifest as an increase of the observed lifetime respect to the expected value \rightarrow Precision measurement of the o-Ps lifetime

secondary scattering in the detector J-PET: P. Kowalski et al., Phys. Med. Biol. submitted

J-PET: P. Kowalski et al., Acta Phys. Pol. A127 (2015) 1505 and Acta Phys. Pol. B47 (2016) 549

Systematic Uncertainties

Accidental events

Acta Phys.Polon. B51 (2020) 165

C. Vigo et al. (2019) [805.06384v] J. of Phys.: Conf. Series, Vol. 1138, conf 1

J. Nucl. Med. 60 (2019) 299-303.

P. Moskal, E. Ł. Stępień, PET Clinics 15 (2020) 439

Application of WLS

J. Smyrski et al Nuclear Instruments and Methods in Physics Research A 851 (2017) 39–42

ONLY DIGITAL in triggerless mode FFE sampling & Readout electronics precision of 20ps (sigma) for 10 Euro per sample M.Pałka, P.M., PCT/EP2014/068367

G. Korcyl, P. M., M. Kajetanowicz, M. Pałka, PCT/EP2014/068352

Library of signals; Principal Component Analysis; Compressive Sensing; J-PET: L. Raczyński et al., Nucl. Instr. Meth. A786 (2015) 105 J-PET: P. M. et al., Nucl. Instrum. Meth. A775 (2015) 54

Reconstruction

G. Korcyl -> poster session

for the 2.5 cm layer the efficiency for the registration of events selected to reconstruct the image is for the plastic scintillator by

a factor of about 20 smaller in relation to the BGO crystals and about 40 times less compared to the LSO crystals

name	type	density [g/cm³]	decay time [ns]	photons/ MeV	mean free path [cm]	
BGO	crystal	7.13	300	6000	1.04	
GSO	crystal	6.71	50	10000	1.49	
LSO	crystal	7.40	40	29000	1.15	
NE102A	polymer	1.032	2.4	10000	10.2	
BC404	polymer	1.032	1.8	10000	10.2	
RP422	polymer	1.032	1.6	10000	10.2	

CRT • Number_of_bed_positions

J-PET: P.M. et al., Phys. Med. Biol. 61 (2016) 2025; arXiv:1602.02058

058

45

Positronium

Symmetric under exchange of particles and anti-particles \rightarrow eigenstate of the charge conjugation operator C

C $|Ps > = (-1)^{L+S} |Ps >$ C $|ny > = (-1)^n | ny >$

Due to charge conjugation both states of the Ps decays are even or odd in the number of decay photons

$$|^{1}S_{0}\rangle \rightarrow 2\gamma, 4\gamma, \dots$$

$$|{}^{3}S_{1}\rangle \rightarrow 3\gamma, 5\gamma, \dots$$

Even number of photons

Odd number of photons

o-Ps
$$\rightarrow$$
 (2n+1) γ

Decay modes

 $p-Ps \rightarrow 2n \gamma$