

Searches for exotic physics by comparing the fundamental properties of protons and antiprotons at BASE

RIKEN

Barbara Latacz

RIKEN 08 / 09 / 2021

東京大学

BASE Collaboration

- **CERN-AD:** Measurement of (RIKEN):
 - \rightarrow proton/antiproton q/m ratio
 - ightarrow magnetic moment of the antiproton and
 - ightarrow cold dark matter searches

- Core members: Stefan Ulmer, Jack Devlin, Barbara Latacz, Peter Micke, Elise Wursten, Matthias Borchert, Stefan Erlewein, Markus Fleck, Julia Jaeger, Gilbertas Umbrazunas, Frederik Voelksen
- Mainz: Measurement of the magnetic moment of the proton, implementation of new technologies (RIKEN/MPG)
- Core members: Christian Smorra, Fatma Abbass, Matthew Bohman, Markus Wiesinger, Daniel Popper, Christian Will

→ Sympathetic cooling of a trapped proton mediated by an LC circuit , Bohman, M. et al. Nature 596, 514–518 (2021).

- Hannover/PTB: QLEDS-laser cooling project, new technologies. (RIKEN/PTB/UH)
- Group leader: Christian Ospelkaus

Institutes: RIKEN, MPIK, CERN, University of Mainz, Tokyo University, GSI Darmstadt, University of Hannover, PTB Braunschweig, ETH Zurich

BSE Baryon/Antybarion Symmetry Experiment

Standard Model of Particle Physics

Naive Expectation	
Baryon/Photon Ratio	10 ⁻¹⁸
Baryon/Antibaryon Ratio	1

Observation	
Baryon/Photon Ratio	0.6 * 10 ⁻⁹
Baryon/Antibaryon Ratio	10 000

- A. Sakharov presented possible solutions in 1967. According to his work, the matter-antimatter asymmetry could be explained by simultaneously occurring three conditions:
 - violation of baryon number;
 - C and CP symmetry violation;
 - lack of thermal equilibrium in the expanding Universe (or direct CPT violation).

CPT violation?

Comparison of fundamental properties of matter/antimatter conjugate system

-> Absolute energy resolution normalized to m-scale.

Slide from S. Ulmer

BSE Single particle measurements in Penning Traps

High precision mass spectroscopy

$$\frac{v_{c,\bar{p}}}{v_{c,p}} = \frac{e_{\bar{p}}/m_{\bar{p}}}{e_p/m_p}$$

Cyclotron Motion

 69 ppt comparison of the antiproton-toproton charge-to-mass ratio, S. Ulmer, Nature 524, 196-199 (2015) High precision magnetic moment measurements

$$\frac{\nu_L}{\nu_c} = \frac{\mu_p}{\mu_N} = \frac{g_p}{2}$$

Larmor Precession

 1.5 p.p.b. Measurement of antiproton magnetic moment, C. Smorra, Nature 550, 371-374 (2017)

Penning trap with: -> radial confinment: $\vec{B} = B_0 \hat{z}$

-> axial confifement:
$$\Phi(\rho, z) = V_0 c_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

• Invariance theorem: Cyclotron frequency of a particle

$$\nu_c = \frac{1}{2\pi} \frac{q_{ion}}{m_{ion}} B \quad \longleftrightarrow \quad \nu_c = \sqrt{\nu_+^2 + \nu_z^2 + \nu_-^2}$$

which is correct also for any small angle misalignment of the trap or quadratic imperfections of the field (G. Gabrielse)!

 Measurement of tiny image currents induced in trap electrodes

.

	Modified Cyclotron Motion Magnetron Motion		
Axial	680 kHz	$\nu_z = \frac{1}{2\pi} \sqrt{\frac{2C_2 qV_0}{m}}$	
Magnetron	8 kHz	$\nu_{-} = \frac{1}{2} \left(\nu_c - \sqrt{\nu_c^2 - 2\nu_z^2} \right)$	
Modified Cyclotron	28.9 MHz	$\nu_+ = \frac{1}{2} \left(\nu_c + \sqrt{\nu_c^2 - 2\nu_z^2} \right)$	

BSE Cyclotron frequency measurement

- "Simple" measurement, with main systematics coming from magnetic field stability
- Classically used in the BASE experiment is the sideband method (measurement of the amplitude modulated axial mode oscillations) which is limited in 2019 to 1.6(2) p.p.b. (120 s).
- Eric A. Cornell, et al. PRL, 63(16):1674–1677, 1989.
 Sven Sturm, et al. PRL, 107(14):143003, September 2011.
- We implemented a new phase method, ~ averaging time, with which they reached in the best cases the frequency scatters for protons on the order of 280(20) p.p.t. at a shot-to-shot sampling rate of 1/(265 s) – improvement by a factor of 5!

BSE Larmor frequency

- To resolve the Larmor Frequency one has to measure the spin flip probability as a function of drive frequency.
- Energy of magnetic dipole in magnetic field: $\Phi_M = -(\overrightarrow{\mu_p} \cdot \overrightarrow{B})$
- The B2 magnetic field correction:

$$B_z = B_0 + B_2 \left(z^2 - \frac{P}{2} \right)$$

adds a spin dependent quadratic axial potential so the Axial frequency becomes function of spin state

 o^2

$$\Delta v_z \sim \frac{\mu_p B_2}{m_p v_z} := \alpha_p \frac{B_2}{v_z}$$

 In order to resolve the change of the spin state we need extremly high B2 (axial frequency about 700 kHz):

 $B_2 \sim 300000 T/m^2 \implies \Delta v_z \sim 170 mHz$

- Most extreme magnetic conditions ever applied to single particle.
- In one trap the g factor measurement is limited to ppm level.

High B2
$$\longrightarrow \frac{\nu_L}{\nu_c} = \frac{\mu_p}{\mu_N} = \frac{g_p}{2}$$

Low B2 $\longrightarrow \frac{\nu_L}{\nu_c} = \frac{\mu_p}{\mu_N} = \frac{g_p}{2}$

BSE Larmor frequency – experimental problems

• Radial quantum jumps shift the axial frequency:

$$\Delta \nu_z(n_+, n_-, m_s) =$$

 $\frac{h\nu_{+}}{4\pi^{2}m_{\mathrm{p}}\nu_{z}}\frac{B_{2}}{B_{0}}\cdot\left(n_{+}+\frac{1}{2}+\frac{\nu_{-}}{\nu_{+}}\left(n_{-}+\frac{1}{2}\right)+\frac{g_{\mathrm{p}}m_{s}}{2}\right)$

where cyclotron quantum jump induce about ~70mHz (70 neV) shift, while spin flip ~170 mHz.

- Tiny heating of the radial mode results in significant fluctuations of the axial frequency.
- Measurement of the cyclotron frequency heats the particle!

SE 1.5 p.p.b. -> C. Smorra, Nature 550, 371-374 (2017)

Idea: divide measurement to two particles and different traps. b Precision trap Analysis trap Spin-flip coils Park electrode Feedback loop larmor particle Cyclotron Axial detection system particle Cyclotron detection 1 cm Axial detection system system «cold» cyclotron «hot» cyclotron particle which probes particle to flip and the magnetic field in analyze the spinthe precision trap eigenstate pay: measure with two particles at different mode energies win: 60% of time usually used for sub-

thermal cooling useable for measurements

Challenges:

- transport without heating
- more challenging systematics

BSE Proton / Antiproton magnetic moment

Table 1 | Error budget of the antiproton magnetic moment measurement

Effect	Correction (p.p.b.)	Uncertainty (p.p.t).)
Image-charge shift	0.05	0.001	calculate
Relativistic shift	0.03	0.003	measure T / calculate
Magnetic gradient	0.22	0.020	measure / calculate
Magnetic bottle	0.12	0.009	measure / calculate
Trap potential	-0.01	0.001	measure / calculate
Voltage drift	0.04	0.020	measure / calculate
Contaminants	0.00	0.280	measure / constrain
Drive temperature	0.00	0.970	measure / constrain
Spin-state analysis	0.00	0.130	measure / simulate / constrain
Total systematic shift	0.44	1.020	

The table lists the relative systematic shifts (column 2) by which the measured magnetic-moment value was corrected; column 3 is the uncertainty of the correction. Details of these systematic effects and their quantification are given in Methods.

classical trap shifts

shifts induced by 2 particle approach

- Best idea: one particle but many traps!
- All systematics can be **reduced / eliminated** with a **cooling trap** and a **tunable magnet**.

2017:

2020:

New trap stack

Precision Trap: Homogeneous field for frequency measurements, $B_2 < 0.5 \mu T / mm^2$. **Analysis Trap**: Inhomogeneous field for the detection of antiproton spin flips, $B_2 = 300 \text{ mT} / mm^2$.

Cooling Trap: Fast cooling of the cyclotron motion.

Reservoir Trap: Stores a cloud of antiprotons, suspends single antiprotons for measurements.

BSE Cooling trap

- PhD thesis of Markus Fleck
- What is a Cooling Trap?
 - -> Trap dedicated to cooling the cyclotron mode.

-> It has both cyclotron and axial detectors and a magnetic bottle to allow for both cooling and temperature evaluation.

-> Redesigned cyclotron detectors for efficient cooling with wide tunning ranges.

- Goal: reduce current 10 h cooling cycles to several minutes.
- CT cyclotron detector:
 - -> Q ~ 1200 when cold, assembled in our new setup!
 - -> cooling time constant ~ 12 s
 - -> tuning range > 3 MHz
 - -> D~5 mm

$$\mathsf{T} = \frac{m}{q^2} * \frac{D^2}{R}$$

BSE Magnetic shimming and shielding system

- PhD thesis of Stefan Erlewein
- Idea: introduce a system of cuperconducting coils to compensate residual B2 and B1:
- -> Additional 3-layer self shielding system.
- -> Use innermost SSC as B0 coil to be able to change B2 and B1 without changing v_+ .
- Residual B2 comming from AT magnetic bottle:

J. A. Devlin et. al., Phys. Rev. Applied 12, 044012 (2019).

SE New trap stack

2017:

2020:

Precision Trap: Homogeneous field for frequency measurements, $B_2 < 0.5 \mu T / mm^2$. Analysis Trap: Inhomogeneous field for the detection of antiproton spin flips, $B_2 = 300 \text{ mT} / mm^2$. Cooling Trap: Fast cooling of the cyclotron motion. Reservoir Trap: Stores a cloud of antiprotons, suspends single antiprotons for measurements. -> To store antiprotons for 405 days we need pressure below 10⁻¹⁸ mbar!

BSE New antiproton degrading system

- Project of Barbara Latacz.
- Since 2018 the Antimatter Factory is operating a new **ELENA** (Extra Low ENergy Antiproton) decelerator.
- The antiproton energy available for experiments decreased from 5.3 MeV to only 100 keV, which corresponds to the degrading foil thickness of about 1-3 μm.
- Challenge: how to close the vacuum system which has to survive 1 bar pressure difference and will keep our fantastic pressure at the levels below 10⁻¹⁸ mbar with 2 μm foil ???

Old system:

the required window was a 25μ m thick stainless-steel foil together with six stacked copper meshes and thin aluminum foil to optimise the antiproton stopping power.

New system:

Vacuum window and the degrader in one piece - 2 μ m thick Mylar foil coated on both sides with 80 nm of Al. •Beam acceptance: 7 holes with 1 mm diameter - 17.1 % ($\sigma_{x,y}$ =2 mm, 5x10⁶ p)

 \rightarrow in the worst expected case with 0.3 % trapping probability it gives 2550 particles.

• Estimated antyproton caching efficiency:

- We estimated that to be safe even if we would be open into air for 30 days, we need the system with leak $< 10^{-8}$ mbar l/s with 1 bar pressure difference.
- 300 K: 5x10⁻⁹ mbar l/s.
- 7 K: max around 4x10⁻¹¹ mbar l/s.
- System did not break under different endurance tests like repetitive cooling cycles, stretching in air and even in liquid nitrogen (!).
- Currently running tests with protons allowed us not to lose any particle due to low pressure in the system, which corresponds to $p < 10^{-15}$ mbar, even after 2.5 cooling cycles!
- Tests with antyprotons next week!

BSE The 2021 experimental setup

BSE Proton / Antiproton magnetic moment

BSE Cold dark matter searches - motivation

• We have very sensitive detectors at BASE, so why not to use it also to search for dark matter...

Standard Model of Particle Physics

• Axion Like Particles - ALPs:

 → pseudoscalar bosons weakly interacting with matter motivated by many beyond the standard model theories
 → coupling to photons by derivative interactions g_{aγ} through e.g. inverse Primakoff Effect

BSE New Axion-like particle detection method

- J. A. Devlin et al. (BASE Collaboration), PRL 126, 041301 (2021).
- Any low mass ALP would form a classical field oscillating with frequency:

$$u_a pprox m_a c^2/h$$

• Coupling of ALP field to **E** and **B** fields:

$$L_{a\gamma} = -g_{a\gamma}a(x)\mathbf{E}(x)\cdot\mathbf{B}(x)$$

• The oscillating ALP field source oscillating magnetic field:

$$\nabla \times \mathbf{B} - \mu \frac{\partial \mathbf{E}}{\partial t} = -g_{a\gamma} \mathbf{B}_e \frac{\partial a}{\partial t}$$
$$\mathbf{B}_a = -\frac{1}{2} g_{a\gamma} r \sqrt{\rho_a \hbar c} B_e \hat{\phi}$$

- where $ho_{a}\hbar c$ is the local ALP energy density, r is the radial distance
- from the axis of the toroid.

- We are preparing to beat the last BASE magnetic moment measurement of the antiproton at 1.5 p.p.b. For that we implemented a few crucial improvements:
 - -> new degrader interface for 100 keV antiproton beam
 - -> new cooling trap
 - -> new magnetic shimming and shielding system.
- In the meantime we will continue to develop dark matter searches experiments.

We can't wait for the 2021/2022 run!!!

4 axial detectors! S. Ulmer, H. Nagahama. J.Devlin, B. Latacz

BSE Frequency Measurements

• Measurement of tiny image currents induced in trap electrodes

- In thermal equilibrium:
 - Particles short noise in parallel
 - Appear as a dip in detector spectrum
 - Width of the dip -> number of particles

$$\Delta v = \frac{1}{2\pi} \frac{R}{m} \left(\frac{q}{D}\right)^2 \cdot N$$

