Model-independent analysis of charged-lepton-flavour-violating τ processes

Kevin Monsálvez Pozo

IFIC, Universitat de València-CSIC

(Collaboration with Tomáš Husek and Jorge Portolés) Based on the published work [Husek et al., 2021]

Introduction

SMEFT

3 Hadronic τ decays

(4) $\ell - \tau$ conversion in nuclei

8 Results I

6 Leptoquarks

Results II

Conclusions

1. Motivation

Neutrinos oscillate $\nu_\ell \leftrightarrow \nu_{\ell'}$

• Does this imply flavour violation in the charged-lepton sector (CLFV)?

The addition of a single right-handed neutrino predicts negligible CLFV effects

• New-physics scenarios allow for an enhancement of these phenomena

Processes involving au lepton

- $\bullet\,$ Most of up-to-date CLFV research involves only e and $\mu\,$
 - already limits on the first and second family: $\mu N \rightarrow eN' \rightarrow R_{\mu e}^{A \mu} < 7 \times 10^{-13}$ (Sindrum II, 2006) [Bertl et al., 2006]
- $\bullet\,$ Experimental hints to non-trivial lepton dynamics $\rightarrow\,$ violation of universality related to the third family
- Rich phenomenology: hadronic τ decays (Belle II)

2. Our project

Use of the SMEFT up to D-6 operators to analyse au-involved processes

• Hadronic τ decays:

$$\begin{array}{rccc} \tau & \rightarrow & \ell P \\ \tau & \rightarrow & \ell P P \\ \tau & \rightarrow & \ell V \end{array} \qquad (\ell = e, \mu)$$

• $\ell - \tau$ conversion in nuclei:

$$\ell \ \mathcal{N}(A,Z) \longrightarrow \tau \ X$$

Current experimental knowledge on τ -involved processes

- Existing limits on hadronic τ decays
 - Belle and BaBar collaborations [Amhis et al., 2017]
- Experimental prospects
 - Belle II \rightarrow improve limits for hadronic τ decays by at least one order of magnitude
 - NA64 experiment at CERN \rightarrow expected sensitivity on $\ell \tau$ conversion in nuclei $R_{\ell\tau} = \frac{\sigma(\ell + N \rightarrow \tau + X)}{\sigma(\ell + N \rightarrow \tau + X)} \sim 10^{-12} 10^{-13}, \quad \ell = e, \mu$

Global numerical analysis of these processes based on the experimental limits from Belle, Belle II and tentatively NA64

$$\mathscr{L}_{SM} = \mathscr{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} \mathcal{Q}_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} \mathcal{Q}_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right)$$

[Grzadkowski et al., 2010]

CLFV	operators	relevant	for	our	analysis	[Husek	et	al.,	2021]:
------	-----------	----------	-----	-----	----------	--------	----	------	------	----

$\Lambda^2 imes$ Coupling	Operator	$\Lambda^2 \times Coupling$	Operator
$C_{LQ}^{(1)}$	$\left(\bar{L}_{p} \gamma_{\mu} L_{r} ight) \left(\bar{Q}_{s} \gamma^{\mu} Q_{t} ight)$	C _e	$\left(\varphi^{\dagger} \varphi ight) \left(\bar{L}_{p} \mathbf{e}_{r} \varphi ight)$
$C_{LQ}^{(3)}$	$\left(\bar{L}_{p}\gamma_{\mu}\sigma^{\prime}L_{r}\right)\left(\bar{Q}_{s}\gamma^{\mu}\sigma^{\prime}Q_{t}\right)$	C _{\varphi e}	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \left(e_{p} \gamma^{\mu} e_{r} \right)$
Ceu	$\left(ar{e}_{p}\gamma_{\mu}e_{r} ight)\left(ar{u}_{s}\gamma^{\mu}u_{t} ight)$	$C^{(1)}_{arphi L}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)\left(\overline{L}_{p}\gamma^{\mu}L_{r}\right)$
C _{ed}	$\left(ar{e}_{p}\gamma_{\mu}e_{r} ight)\left(ar{d}_{s}\gamma^{\mu}d_{t} ight)$	$C^{(3)}_{\varphi L}$	$\left(\stackrel{\checkmark}{\varphi^{\dagger}} i \stackrel{\leftrightarrow}{D}_{I\mu} \varphi \right) \left(\bar{L}_{p} \sigma_{I} \gamma^{\mu} L_{r} \right)$
C _{Lu}	$\left(\bar{L}_{\rho}\gamma_{\mu}L_{r}\right)\left(\bar{u}_{s}\gamma^{\mu}u_{t}\right)$	C _{eW}	$\left(\bar{L}_{p}\sigma^{\mu\nu}e_{r}\right)\sigma_{I}\varphi W_{\mu\nu}^{I}$
C _{Ld}	$\left(\bar{L}_{p}\gamma_{\mu}L_{r} ight) \left(\bar{d}_{s}\gamma^{\mu}d_{t} ight)$	C _{eB}	$\left(\bar{L}_{p}\sigma^{\mu u}e_{r} ight)arphi B_{\mu u}$
C_{Qe}	$\left(ar{Q}_{p}\gamma_{\mu}Q_{r} ight)\left(ar{e}_{s}\gamma^{\mu}e_{t} ight)$		
C_{LedQ}	$\left(\bar{L}_{p}^{j} e_{r} ight) \left(\bar{d}_{s} Q_{t}^{j} ight)$		
$C^{(1)}_{LeQu}$	$\left(\bar{L}_{p}^{j}e_{r}\right)\varepsilon_{jk}\left(\bar{Q}_{s}^{k}u_{t}\right)$		
$C^{(3)}_{LeQu}$	$\left(\bar{L}_{p}^{j}\sigma_{\mu\nu}\mathbf{e}_{r}\right)\varepsilon_{jk}\left(\bar{Q}_{s}^{k}\sigma^{\mu\nu}u_{t}\right)$		

Hadronic au decays

Due to $m_{\tau} \sim 2$ GeV, the hadronization of the quark currents in the D-6 operators are beyond Chiral perturbation theory $(\chi PT) \rightarrow$ Resonance chiral theory $(R\chi T)$ framework is used [Weinberg, 1979] [Ecker et al., 1989]

We consider three different flavour violating hadronic τ decays:

A. Rostomyan, TAU2018

Total cross section via convolution of perturbative cross section $\hat{\sigma}$ and PDFs f

$$\sigma_{\ell- au} = \hat{\sigma}(\xi, Q^2) \otimes f(\xi, Q^2)$$

- $\bullet~\xi$ fraction of nucleus momentum carried by the parton
- $Q^2 = -q^2$ transferred momentum (characteristic scale of the process)
 - PDFs determined at Q_0^2 and evolved perturbatively through DGLAP to any scale Q^2

We deal with heavy nuclei instead of free nucleons

• Nuclear binding effects alter significantly the non-perturbative behaviour at different ξ regimes [Kovařík et al., 2016]

$$\sigma(\ell \mathcal{N}(P) \to \tau X) = \sum_{z=q,\bar{q},g} \sum_{i,j} \int_{\xi_{min}}^{1} \int_{Q^2_{-}(\xi)}^{Q^2_{+}(\xi)} d\xi dQ^2 \frac{d\hat{\sigma}(\ell z_i(\xi P) \to \tau z_j)}{d\xi dQ^2} f_{z_i}(\xi,Q^2)$$

Our analysis

- Based on NA64 prospects [Gninenko et al., 2018]
- $\ell N(A, Z) \to \tau X$: N(A, Z) = Fe(56, 26), Pb(208, 82)
- Energy of the incident beam of leptons: $E_e = 100~{
 m GeV}$ and $E_\mu = 150~{
 m GeV}$

Numerical set-up

Every observable calculated within the SMEFT will depend on several WCs and the CLFV scale Λ_{CLFV} \rightarrow we fit C/Λ_{CLFV}^2

We assume minimal flavour violation in the quark sector (only CKM)

- Same Wilson coefficients for all quark flavours
- We consider quark currents like $\bar{c}u, \bar{b}s, \ldots$ through local vertices \rightarrow assuming flavour-changing neutral currents (FCNC)
 - FCNC forbidden at LO in SM by GIM

We study both scenarios: CLFV (\pm FCNC) \rightarrow assuming $\Lambda_{CLFV} = \Lambda_{FCNC}$

Numerical analysis performed with HEPfit (http://hepfit.roma1.infn.it/), [De Blas et al., 2020]

QCD running

We work at the energy scale of the au

• Scale-independent C'_{LedQ} and $C^{(1)\prime}_{LeQu}$: $C_{LedQ} = \frac{m_i}{m_\tau} C'_{LedQ}$, $C^{(1)}_{LeQu} = \frac{m_i}{m_\tau} C^{(1)\prime}_{LeQu}$

• Running:
$$C_{LeQu}^{(3)}(m_{\tau}) = \left[\frac{\alpha_s^4(m_{\tau})}{\alpha_s^4(m_b)}\right]^{-\frac{12}{75}} \left[\frac{\alpha_s^5(m_b)}{\alpha_s^5(\mu_{\ell-\tau})}\right]^{-\frac{12}{69}} C_{LeQu}^{(3)}(\mu_{\ell-\tau})$$

Final set of WCs:

$$\left\{C_{LQ}^{(1)}, C_{LQ}^{(3)}, C_{eu}, C_{ed}, C_{Lu}, C_{Ld}, C_{Qe}, C_{LedQ}^{\prime}, C_{LeQu}^{(1)\,\prime}, C_{Qe}^{(3)}(m_{\tau}), C_{\varphi L}^{(1)\,\prime}, C_{\varphi e}, C_{\gamma}, C_{Z}, C_{e\varphi}\right\}$$

Constraints on Λ_{CLFV} from present Belle and expected Belle II bounds, 99.8% confidence level

Constraints on Λ_{CLFV} [TeV], considering $C \sim 1$, 99.8% confidence level

Bounds on A _{CLFV} [TeV]									
WC	Belle	Belle II	WC	Belle	Belle II				
$C_{LQ}^{(1)}$	$\gtrsim 8.5$	$\gtrsim 26$	$C^{(1)\prime}_{LeQu}$	$\gtrsim 0.65$	$\gtrsim 1.8$				
$C_{LQ}^{(3)}$	$\gtrsim 7.5$	$\gtrsim 21$	$C_{LeQu}^{(3)}$	$\gtrsim 12$	\gtrsim 33				
Ceu	$\gtrsim 7.7$	\gtrsim 22	$C^{(1)\prime}_{arphi L}$	$\gtrsim 6.3$	$\gtrsim 17$				
C _{ed} , C _{Ld}	$\gtrsim 10$	$\gtrsim 26$	$C_{arphi e}$	\gtrsim 8.8	$\gtrsim 26$				
C _{Lu}	$\gtrsim 6.5$	$\gtrsim 20$	C_{γ}	\gtrsim 120	\gtrsim 330				
C _{Qe}	$\gtrsim 11$	$\gtrsim 28$	CZ	$\gtrsim 0.79$	$\gtrsim 2.1$				
C'_{LedQ}	$\gtrsim 2.9$	$\gtrsim 7.9$	$C_{e\varphi}$	$\gtrsim 0.54$	$\gtrsim 1.5$				

Constraints on C/Λ_{CLFV} (GeV⁻²) from the Marginalized/Individual analysis, current Belle bounds, 99.8% confidence level

Constraints on Λ_{CLFV} [TeV] from expected NA64 sensitivity, considering $C\sim$ 1, 99.8% confidence level

Bounds on A _{CLFV} [TeV]									
WC	e- $ au$	μ – $ au$	WC	e- $ au$	μ - τ				
$C_{LQ}^{(1)}$	$\gtrsim 0.13$	$\gtrsim 1.7$	C_{LedQ}	$\gtrsim 0.06$	$\gtrsim 0.9$				
$C_{LQ}^{(3)}$	$\gtrsim 0.11$	$\gtrsim 1.5$	$C^{(1)}_{LeQu}$	$\gtrsim 0.05$	$\gtrsim 0.6$				
C _{eu}	$\gtrsim 0.11$	$\gtrsim 1.4$	$C^{(3)}_{LeQu}$	$\gtrsim 0.2$	$\gtrsim 2.7$				
C _{ed}	$\gtrsim 0.11$	$\gtrsim 1.4$	$C_{arphi e}, C^{(1)}_{arphi L}$	$\gtrsim 0.08$	$\gtrsim 1$				
C _{Lu}	$\gtrsim 0.09$	$\gtrsim 1.1$	C_{γ}	\gtrsim 0.6	\gtrsim 7.5				
C _{Ld}	$\gtrsim 0.09$	$\gtrsim 1.2$	CZ	$\gtrsim 0.02$	$\gtrsim 0.3$				
C _{Qe}	$\gtrsim 0.1$	$\gtrsim 1.4$	$C_{e\varphi}$	$\gtrsim 0.003$	$\gtrsim 0.04$				

Worse limits than τ decays but could remove correlations between WCs if improvement of at least two orders of magnitude ($R_{\tau\ell} \sim 10^{-15}$)

Leptoquark Lagrangian

• A total of 5 scalar and 5 vectorial leptoquarks based on the representations of matter fields under the SM gauge group [Doršner et al., 2016]

LQ type	SM symmetries	Lagrangian
<i>S</i> ₃	(3 , 3 , 1/3)	$+Y_{3,ij}^{LL}\bar{Q}_{L}^{Ci,a}\epsilon^{ab}(\tau_k S_3^k)^{bc}L_{L}^{j,c}+h.c.$
R_2	(3 , 2 , 7/6)	$-Y_{2,ij}^{RL}ar{u}_{R}^{i}R_{2}^{a}\epsilon^{ab}L_{L}^{j,b}+Y_{2,ij}^{LR}ar{e}_{R}^{i}R_{2}^{a\dagger}Q_{L}^{j,a}+h.c.$
\tilde{R}_2	(3 , 2 , 1/6)	$- ilde{Y}^{RL}_{2,ij}ar{d}^{i}_{R} ilde{R}^{a}_{2}\epsilon^{ab}L^{j,b}_{L}+h.c.$
$ ilde{S}_1$	(3 , 1 , 4/3)	$+ ilde{Y}_{1,ij}^{RR}ar{d}_{R}^{C,i} ilde{S}_{1}m{e}_{R}^{j}+h.c.$
S_1	$({f \bar 3},{f 1},1/3)$	$+Y_{1,ij}^{LL}\bar{Q}_{L}^{Ci,a}S_{1}\epsilon^{ab}\mathcal{L}_{L}^{j,b}+Y_{1,ij}^{RR}\bar{u}_{R}^{Ci}S_{1}e_{R}^{j}+h.c.$
U ₃	(3 , 3 , 2/3)	$+X^{\mathrm{LL}}_{3,ij}ar{Q}^{i,a}_{\mathrm{L}}\gamma^{\mu}(au_{k}U^{k}_{3,\mu})^{ab}L^{j,b}_{\mathrm{L}}+h.c.$
V_2	(3 , 2 , 5/6)	$+X_{2,ij}^{RL}\bar{d}_{R}^{Ci}\gamma^{\mu}V_{2,\mu}^{a}\epsilon^{ab}L_{L}^{j,b}+X_{2,ij}^{LR}\bar{Q}_{L}^{Ci,a}\gamma^{\mu}V_{2,\mu}^{b}\epsilon_{R}^{j}+h.c.$
$ ilde{V}_2$	$(\mathbf{ar{3}},2,-1/6)$	$+ ilde{X}^{RL}_{2,jj}ar{u}^{C,i}_{R}\gamma^{\mu} ilde{V}^{b}_{2,\mu}\epsilon^{ab}\mathcal{L}^{j,a}_{L}+h.c.$
$ ilde{U}_1$	(3 , 1 , 5/3)	$+ ilde{X}^{RR}_{1,ij}ar{u}^{i}_{R}\gamma^{\mu} ilde{U}_{1,\mu}m{e}^{j}_{R}+h.c.$
U_1	(3 , 1 , 2/3)	$+X_{1,ij}^{LL}\bar{Q}_{L}^{j,a}\gamma^{\mu}U_{1,\mu}L_{L}^{j,a}+X_{1,ij}^{RR}\bar{d}_{R}^{i}\gamma^{\mu}U_{1,\mu}e_{R}^{j}+h.c.$

• Keep only terms responsible for CLFV

1. Matching the SMEFT

We integrate out the leptoquarks at tree level to match the 4-fermion operators of the SMEFT

- $\bullet\,$ Take the total derivative of the action resulting from the Lagrangian $\rightarrow\,$ EOM of the LQs
- m_S and m_V large \rightarrow expansion in momenta \rightarrow substituting rules for the LQ fields
- Insert these relations into the Lagrangian

$$\begin{split} \mathcal{L}_{S}^{\text{eff}} &\supset \frac{Y_{d,ij}^{\chi_{1}\chi_{2}} Y_{d,mn}^{\chi_{3}\chi_{4}}}{m_{S}^{2}} \left(\bar{\psi}_{\chi_{1}}^{i} \psi_{\chi_{2}}^{'j} \right) \left(\bar{\psi}_{\chi_{4}}^{\prime n} \psi_{\chi_{3}}^{m} \right), \\ \mathcal{L}_{V}^{\text{eff}} &\supset \frac{X_{d,ij}^{\chi_{1}\chi_{2}} X_{d,mn}^{\chi_{3}\chi_{4}}}{m_{V}^{2}} \left(\bar{\psi}_{\chi_{1}}^{i} \gamma_{\mu} \psi_{\chi_{2}}^{'j} \right) \left(\bar{\psi}_{\chi_{4}}^{\prime n} \gamma^{\mu} \psi_{\chi_{3}}^{m} \right). \end{split}$$

2. Flavour considerations

- Enhancement of flavour violation in the third family
- ullet Minimal flavour violation in the quark sector \rightarrow quark-flavour-blind Yukawas

$$Y_{d}^{\chi_{1}\chi_{2}} = \begin{pmatrix} y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} \\ y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} \\ y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} \end{pmatrix}, \qquad y_{d}^{\chi_{1}\chi_{2}} \neq y_{d\tau}^{\chi_{1}\chi_{2}}$$

Bounds from CLFV τ processes translated to the leptoquark framework \rightarrow bounds on $yy'/m_{S,V}^2$

Two independent scenarios \rightarrow all scalar or vector leptquarks at the same time

 \bullet Same energy scale for all leptoquarks within the same scenario \rightarrow equal masses

Previous assumption $\Lambda_{CLFV} = \Lambda_{FCNC}$ is better motivated

Bounds mainly from four-fermion operators of the SMEFT

- Gauge boson couplings to LQs leads to constraints on the same pairs of Yukawas
- Gauge bosons contribute through loop processes \rightarrow lower sensitivity (except for the C_{γ} ; see below)

 $\Lambda_{CLFV} = m_S$

 $yy = f(C_i)$

$$\begin{split} y_{3}^{\mathrm{LL}} y_{3\tau}^{\mathrm{LL}} &= C_{LQ}^{(1)} + C_{LQ}^{(3)} \,, \\ y_{2}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -2C_{Lu} \,, \\ y_{1}^{\mathrm{RL}} y_{1\tau}^{\mathrm{LR}} &= C_{LQ}^{(1)} - 3C_{LQ}^{(3)} \,, \\ y_{1}^{\mathrm{RR}} y_{1\tau}^{\mathrm{RR}} &= 2C_{eu} \,, \\ \tilde{y}_{2}^{\mathrm{RL}} \tilde{y}_{2\tau}^{\mathrm{RL}} &= -2C_{Ld} \,, \\ y_{2\tau}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -2C_{Ld} \,, \\ y_{2\tau}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ y_{2\tau}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ y_{1\tau}^{\mathrm{RL}} y_{1\tau}^{\mathrm{RR}} &= C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ y_{1\tau}^{\mathrm{RL}} y_{1\tau}^{\mathrm{RR}} &= C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ \end{split}$$

- Pairs of Yukawas $y_{2\tau}^{RL}y_2^{LR}$ and $y_{1\tau}^{LL}y_1^{RR}$ unconstrained by τ decays $\rightarrow \ell \tau$ conversion limits considered
- 11 pairs of Yukawas and 11 effective bounds on the WCs

au decays	Bounds on	Λ _{CLFV} [TeV]	Bounds on Y	ukawas $[10^{-3}]$	
Yukawas	Belle	Belle II	Belle	Belle II	
$ y_3^{LL}y_3^{LL} $	\gtrsim 9.1	\gtrsim 23	$\lesssim 12$	\lesssim 1.9	
$ y_2^{RL}y_2^{RL} $	\gtrsim 4.6	$\gtrsim 14$	\lesssim 47	\lesssim 5.0	
$ y_2^{LR}y_{2\tau}^{LR} $	\gtrsim 7.8	$\gtrsim 20$	$\lesssim 17$	$\lesssim 2.6$	
$ y_2^{RL}y_2^{LR} $	$\gtrsim 6.0$	$\gtrsim 16$	$\lesssim 28$	$\lesssim 3.7$	
$ \tilde{y}_2^{RL}\tilde{y}_2^{RL} , \tilde{y}_1^{RR}\tilde{y}_1^{RR} $	$\gtrsim 7.1$	$\gtrsim 18$	$\lesssim 20$	$\lesssim 3.0$	
$ y_1^{LL}y_{1 au}^{LL} $	\gtrsim 3.9	$\gtrsim 11$	$\lesssim 64$	\lesssim 7.7	
$ y_1^{RR}y_{1 au}^{RR} $	\gtrsim 5.4	$\gtrsim 16$	$\lesssim 34$	\lesssim 4.1	
$ y_1^{LL}y_1^{RR} $	$\gtrsim 6.0$	$\gtrsim 16$	$\lesssim 28$	$\lesssim 3.7$	
$\ell- au$ conversion	Bounds on	Λ _{CLFV} [TeV]	Bounds on Yukawas [10 ⁰]		
Yukawas	е-т	$\mu - \tau$	е-т	$\mu - \tau$	
$ y_{2\tau}^{RL}y_{2}^{LR} $	$\gtrsim 0.054$	$\gtrsim 0.66$	\lesssim 350	$\lesssim 2.3$	
$ y_{1\tau}^{\text{LL}}y_{1}^{\text{RR}} $	$\gtrsim 0.063$	$\gtrsim 0.75$	$\lesssim 250$	$\lesssim 1.8$	

Results: C_{γ}

To match the C_{γ} consider gauge couplings of the leptoquarks

- Vector leptoquarks
 - the uncertainty on their origin UV completion hinders to extract meaningful information \rightarrow not considered [Gonderinger and Ramsey-Musolf, 2010]
- Scalar leptoquarks
 - coupled through the covariant derivative

Leading-order contribution within the LQ framework to $C_\gamma \rightarrow$ one-loop comuptation of $\ell_1 \rightarrow \ell_2 \gamma$ process

- Integration by regions [Fuentes-Martín et al., 2016]
- Main contribution from two leptoquarks: $R_2^{5/3}$ and S_1

$$\frac{C_{\gamma}}{\Lambda_{\mathsf{CLFV}}^2} = \frac{em_t V_{tb}}{32\sqrt{2}\pi^2 v m_5^2} (Q_{LQ} - 3Q_t) y_1 y_2 \longrightarrow \begin{cases} R_2^{5/3}: & Q_{LQ} = 5/3; \ y_1 y_2 = y_{2\tau}^{RL} y_2^{LR} \\ S_1: & Q_{LQ} = 1/3; \ y_1 y_2 = y_{1\tau}^{LL} y_1^{RR} \end{cases}$$

$(C_{\gamma}/\Lambda^2_{CLFV})^{ au-h}$	Bounds on	Λ _{CLFV} [TeV]	Bounds on Yukawas $[10^{-2}]$		
Yukawas	Belle Belle II		Belle	Belle II	
$ y_{2\tau}^{RL}y_{2}^{LR} $	$\gtrsim 1.8$	$\gtrsim 5$	$\lesssim 0.44$	$\lesssim 0.057$	
$ y_{1 \tau}^{LL} y_{1}^{RR} $	\gtrsim 4.7	$\gtrsim 13$	$\lesssim 0.063$	$\lesssim 0.0081$	

Model-independent numerical analysis of SMEFT D-6 operators related to CLFV processes the au lepton

We studied 28+4 observables

- 14 different LFV τ decay channels into hadrons for each $\ell \rightarrow$ we used current Belle and expected Belle II data (strongest bounds)
- $e \tau$ and $\mu \tau$ conversion in Fe(56,26) and Pb(208,82) \rightarrow feasible at NA64
 - not competitive yet, could remove correlations between WCs if improvement of at least two orders of magnitude ($R_{\tau\ell}\sim 10^{-15}$)

Statistical part performed by HEPfit \rightarrow we showed the importance of the Marginalized analyses over the single-parameter analyses

We translated the bounds on the SMEFT parameters into constraints on the most general leptoquark framework

• We integrated away the heavy leptoquarks and related their Yukawas to the WCs

Main constraints from four-fermion operators (tree-level contributions)

- ullet Some pairs of Yukawas only bounded from $\ell-\tau$ conversion
- The main bound on C_{γ} from au decays helps improving these low-bounded pair of Yukawas
 - not competitive against four-fermion bounds anyway

The article with the leptoquark analysis will appear soon on arXiv: Stay tuned!

http://lhcpheno.ific.uv-csic.es/

Kevin Monsálvez Pozo (IFIC)

Bibliography I

Amhis, Y. et al. (2017).

Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of summer 2016. *Eur. Phys. J. C*, 77(12):895.

Bertl, W. H. et al. (2006).

A Search for muon to electron conversion in muonic gold. *Eur. Phys. J. C*, 47:337–346.

De Blas, J. et al. (2020).

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models.

Eur. Phys. J. C, 80(5):456.

Doršner, I., Fajfer, S., Greljo, A., Kamenik, J. F., and Košnik, N. (2016). Physics of leptoquarks in precision experiments and at particle colliders. *Phys. Rept.*, 641:1–68.

Ecker, G., Gasser, J., Pich, A., and de Rafael, E. (1989). The Role of Resonances in Chiral Perturbation Theory. *Nucl. Phys.*, B321:311–342.

Fuentes-Martín, J., Portolés, J., and Ruiz-Femenia, P. (2016). Integrating out heavy particles with functional methods: a simplified framework. *JHEP*, 09:156.

Gninenko, S., Kovalenko, S., Kuleshov, S., Lyubovitskij, V. E., and Zhevlakov, A. S. (2018). Deep inelastic $e - \tau$ and $\mu - \tau$ conversion in the NA64 experiment at the CERN SPS. *Phys. Rev.*, D98(1):015007.

 Gonderinger, M. and Ramsey-Musolf, M. J. (2010).
 Electron-to-Tau Lepton Flavor Violation at the Electron-Ion Collider. JHEP, 11:045.
 [Erratum: JHEP 05, 047 (2012)].

Grzadkowski, B., Iskrzynski, M., Misiak, M., and Rosiek, J. (2010). Dimension-Six Terms in the Standard Model Lagrangian. *JHEP*, 10:085.

```
Husek, T., Monsálvez-Pozo, K., and Portolés, J. (2021).
Lepton-flavour violation in hadronic tau decays and \mu - \tau conversion in nuclei.
JHEP, 01:059.
```


Kovařík, K., Kusina, A., Ježo, T., Clark, D. B., Keppel, C., Lyonnet, F., Morfín, J. G., Olness, F. I., Owens, J. F., Schienbein, I., and Yu, J. Y. (2016). ncteq15: Global analysis of nuclear parton distributions with uncertainties in the cteq framework.

Phys. Rev. D, 93:085037.

Weinberg, S. (1979). Phenomenological Lagrangians. *Physica*, A96(1-2):327–340.

Correlation matrix: Belle

	$C_{LQ}^{(1)}$	$C_{LQ}^{(3)}$	C_{eu}	C_{ed}	C_{Lu}	C_{Ld}	C_{Qe}	C'_{LedQ}	$C_{LeQu}^{(1)\prime}$	$C^{(3)}_{LeQu}$	$C_{\varphi L}^{(1)}'$	$C_{\varphi e}$	C_{γ}	C_Z	$C_{e\varphi}$		1.0
$C_{LQ}^{\left(1\right)}$	+1	-0.74	+0.022	+0.056	-0.81	-0.42	+0.063	+0.035	-0.1	+0.074		-0.078	+0.13	-0.19	+0.022		1.0
$C_{LQ}^{\left(3\right)}$	-0.74	$^{+1}$	-0.001	-0.011	+0.76	+0.19	-0.08	+0.12	+0.13	-0.058	+0.84	+0.064	-0.1	+0.15	+0.1	_	0.8
C_{eu}	+0.022	-0.001	$^{+1}$	+0.27	+0.099	-0.0054	-0.57	+0.071	-0.051	+0.11	+0.056	-0.18	+0.18	+0.019	+0.063		0.6
C_{ed}	+0.056	-0.011	+0.27	$^{+1}$	-0.025	+0.015		+0.18	+0.079	+0.035	-0.029	+0.15	+0.059	-0.12	+0.16		0.0
C_{Lu}	-0.81	+0.76	+0.099	-0.025	$^{+1}$	+0.3	-0.043	+0.019	+0.14	+0.019	+0.57	+0.12	+0.041	+0.13	+0.028		0.4
C_{Ld}	-0.42	+0.19	-0.0054	+0.015	+0.3	$^{+1}$	+0.035	-0.15	-0.047	+0.031	+0.24	-0.069	+0.034	-0.099	-0.12		0.0
C_{Qe}	+0.063	-0.08			-0.043	+0.035	+1	-0.17	+0.0048	+0.041	-0.091	+0.16	+0.079	-0.12	-0.14		0.2
C_{LedQ}'	+0.035	+0.12	+0.071	+0.18	+0.019	-0.15	-0.17	$^{+1}$	+0.33	-0.02	+0.096	+0.034	-0.0005	-0.00059	+0.81	_	0.0
$C_{LeQu}^{(1)\prime}$	-0.1	+0.13	-0.051	+0.079	+0.14	-0.047	+0.0048	+0.33	+1	-0.026	+0.048	+0.12	+0.007	+0.0023	+0.33		0.0
$C_{LeQu}^{(3)}$	+0.074	-0.058	+0.11	+0.035	+0.019	+0.031	+0.041	-0.02	-0.026	$^{+1}$	-0.05	-0.017		+0.61	-0.02		-0.2
$C^{(1)\prime}_{\varphi L}{}^\prime$	-0.56	+0.84	+0.056	-0.029	+0.57	+0.24	-0.091	+0.096	+0.048	-0.05	+1	+0.11	-0.067	+0.21	+0.079		-0.4
$C_{\varphi e}$	-0.078	+0.064	-0.18	+0.15	+0.12	-0.069	+0.16	+0.034	+0.12	-0.017	+0.11	$^{+1}$	+0.021	+0.18	+0.027		
C_{γ}	+0.13	-0.1	+0.18	+0.059	+0.041	+0.034	+0.079	-0.0005	+0.007		-0.067	+0.021	$^{+1}$	-0.83	+0.01		-0.6
C_Z	-0.19	+0.15	+0.019	-0.12	+0.13	-0.099	-0.12	-0.00059	+0.0023	+0.61	+0.21	+0.18	-0.83	+1	-0.0098	_	-0.8
$C_{e\varphi}$	+0.022	+0.1	+0.063	+0.16	+0.028	-0.12	-0.14	+0.81	+0.33	-0.02	+0.079	+0.027	+0.01	-0.0098	+1		-1.0
																	4.0

Results: vector leptoquarks

 $\Lambda_{CLFV} = m_V$

• We start with 11 pairs of Yukawas but 9 effective bounds on the WCs

- $x_{1,2}^{(\ell- au)}$ unconstrained by au decays $o \ell- au$ conversion limits considered
- 9 pairs of Yukawas and 9 effective bounds on the WCs

au decays	Bounds on	Λ_{CLFV} [TeV]	Bounds on Y	ukawas $[10^{-3}]$
Yukawas	Belle	Belle II	Belle	Belle II
$ x_3^{LL}x_{3\tau}^{LL} $	$\gtrsim 8.2$	$\gtrsim 25$	$\lesssim 15$	$\lesssim 1.7$
$ x_2^{RL}x_2^{RL} , x_1^{RR}x_1^{RR} $	$\gtrsim 10$	$\gtrsim 26$	$\lesssim 10$	$\lesssim 1.5$
$ x_2^{LR}x_2^{LR} $	$\gtrsim 11$	$\gtrsim 28$	$\lesssim 8.3$	$\lesssim 1.3$
$ \tilde{x}_2^{RL}\tilde{x}_2^{RL} $	$\gtrsim 6.5$	$\gtrsim 20$	$\lesssim 24$	$\lesssim 2.5$
$ x_1^{LL}x_{1 au}^{LL} $	$\gtrsim 6.7$	$\gtrsim 18$	$\lesssim 22$	$\lesssim 3.1$
$ \tilde{x}_1^{RR}\tilde{x}_{1 au}^{RR} $	\gtrsim 7.7	$\gtrsim 22$	$\lesssim 17$	$\lesssim 2.1$
$ x_{1,2}^{(\tau-h)} $	$\gtrsim 18$	\gtrsim 49	$\lesssim 3.1$	$\lesssim 0.42$
$\ell- au$ conversion	Bounds on	Λ _{CLFV} [TeV]	Bounds on Y	′ukawas [10 ⁰]
Yukawas	e	$\mu - \tau$	е-т	μ - τ
$ x_{1,2}^{(\ell- au)} $	$\gtrsim 0.055$	$\gtrsim 0.83$	\lesssim 330	$\lesssim 1.5$

Vector leptoquarks interaction with the photon depend on their nature \rightarrow gauge bosons or not of a higher energy theory

• there can exist an anomalous magnetic moment coupling

$$\mathcal{L}_{V,\gamma} = -ieQ_V igg(\left[\mathcal{V}^{\dagger}_{\mu
u} V^{
u} - \mathcal{V}_{\mu
u} V^{
u\dagger}
ight] A^{\mu} - (1-\kappa) V^{\dagger}_{\mu} V_{
u} F^{\mu
u} igg)$$

- gauge boson $\rightarrow \kappa = 0$
 - three-gauge-boson vertex

If gauge boson, propagator:

$$\frac{-ig^{\mu\nu}}{k^2-m_V^2+i\epsilon}\,,$$

otherwise

$$\frac{-i}{k^2 - m_V^2 + i\epsilon} \left(g^{\mu\nu} - \frac{k^\mu k^\nu}{m_V^2} \right)$$

Second term introduces extra divergences to the loop computations of $\ell_1 \rightarrow \ell_2 \gamma$

they do not cancel as for scalar leptoquarks

If gauge boson, possible contributions to the loop from other defrees of freedom in the UV completion