

Search for lepton number violation and lepton flavor violation in K⁺ and π^0 decays

Roberta Volpe <u>roberta.volpe@cern.ch</u> Comenius University, Bratislava (SK) On behalf of the NA62 Collaboration

PANIC 2021 Lisbon, virtual, 5-10 September 2021

Outline

Accepted by Phys. Rev. Let.

PLB 797 (2019) 134794

PANIC2021

Lepton Number Violation (LNV)

 $L = L_e + L_\mu + L_\tau$ Lepton flavor: L_e , L_{μ} , L_{τ} No gauge symmetry imposes the Lepton Number conservation, accidental symmetry in the SM No processes with LNV have been observed so far In the SM neutrinos are massless, but they do have mass (neutrino oscillations)

The observation of lepton number violating processes involving charged leptons would verify the Majorana nature of the neutrino.

Probe very high scale Neutrino mass problem

Atre et al, JHEP05(2009)030

Lepton Flavor Violation (LFV)

Lepton flavor: L_e, L_μ, L_τ

Observation of neutrino oscillations provided the first proof of the non-conservation of LF But no charged lepton flavor (CLFV) violation has been observed so far

Several BSM scenarios foresee CLFV

example: $K^+ \rightarrow \pi^+ \mu^- e^+$ mediated by a Leptoquark $\Delta L_e = 1$ $\Delta L_{\mu} = 1$ u \overline{s} Y_{LQ} [JHEP 12 (2019) 089], l_1^+ l_{2}^{-} [Nucl. Phys. B 176 (1980) 135]

<u>Other new physics</u> scenarios:

- •Heavy neutrinos
- •Heavy Z'

•Anomalous gauge coupling

•SUSY

•

Some of these can explain neutrino oscillations or the possible flavor anomalies in B-physics and foresee LNV or LFV

 $K^+ \rightarrow \pi^+ \mu^- e^+$ $\pi^0 \rightarrow \mu^- e^+$

This talk:

LNV and LFV experimental status

Searches in K decays are complementary to searches in B-physics and in pure leptonic processes as $\mu \rightarrow 3e$, tau or muon decay, or neutrinoless double beta decay

State of the art before NA62 2016-2018 run

NA62 Collaboration

~ 200 participants

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver (UBC)

roberta.volpe@cern.ch

Features required for the BR(K⁺ $\rightarrow \pi^+ \nu \nu$)

- very good kinematic reconstruction
- time measurements

Decay	BR	Main Rejection '
$K^+ \to \mu^+ \nu_\mu(\gamma)$	63%	μ -ID + kinema
$K^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinem
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	multi-track + kine
$K^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinem
$K^+ \to \pi^0 e^+ \nu_e$	5%	e -ID + γ -vet
$K^+ \to \pi^0 \mu^+ \nu_\mu$	3%	μ -ID + γ -vet

Talk by C. Lazzeroni in the Flavor session https://indico.lip.pt/event/ 592/contributions/3549/

	Κ,π,μ	identification
2		

- Hermetic detection of muons
- Hermetic detection of photons

Features useful also for the LFV and LNV searches

NA62 apparatus: the p and K beam

JINST 12 P05025 (2017), arxiv:1703.08501

845Z NA62 apparatus: kaon decays reconstruction

roberta.volpe@cern.ch

JINST 12 P05025 (2017), arxiv:1703.08501

<u>3 tracks reconstructed</u> by the STRAW

Downstream tracking:

NA62 apparatus: photon veto system

Hermetic photon veto system (LAV,SAV,LKr)

Multiplicity rejection (LAV,SAV,LKr, CHOD,STRAW)

Large Angle Veto (LAV)

12 stations (lead glass blocks) Covering angles $8.5 < \theta < 50$ mrad

 $\pi v v$ background rejection: $K^+ \rightarrow \pi^+ \pi^0$

 $\mathbf{M} \epsilon(\pi^0) = 3 \ 10^{-8}$

roberta.volpe@cern.ch

JINST 12 P05025 (2017), arxiv:1703.08501

CHOD Charged Hodoscope, plastic scintillator

LKr calorimeter Photon detection

Covering angles $1 < \theta < 8.5 \text{ mrad}$

Small Angle Veto (SAV)

- IRC: Inner Ring Calorimeter
- Small Angle Calorimeter, Covering angles <1 mrad

PANIC2021

NA62 apparatus: particle identification

roberta.volpe@cern.ch

INST 12 P05025 (2017), arxiv:1703.08501

Data taking timeline

roberta.volpe@cern.ch

NA62 Data Taking

- ☑ 2015 Commissioning run
- **☑** 2016 Commissioning + Physics run (45 days)
- **2017** Physics run (160 days)
- ☑ 2018 Physics run (217 days)
- **D** 2021 Physics run ongoing

Till the next LHC Long Shutdown

results on K-> $\pi v v$ and K-> πX_{inv} : [PLB 791 (2019) 156] [JHEP 11 (2020) 042] [JHEP 06 (2021) 093] https://indico.lip.pt/event/592/contributions/3549/

Much broader physics program eg at PANIC2021:

HNL searches: https://indico.lip.pt/event/592/contributions/3546/ Radiative decay: https://indico.lip.pt/event/592/contributions/3206/

$K^+ \rightarrow \pi^{+/-} \mu^{-/+} e^+ and \pi^0 \rightarrow \mu^- e^+$

Analysis strategy:

- Search in 2017 + 2018 Data
- Blind analysis strategy: unblind control regions, then unblind the signal regions
- 2 independent analyses cross-checked
- Normalization to K-> $\pi^+\pi^+\pi^-$
- Triggers :
 - Dedicated triggers downscaled recorded simultaneously with $\pi v \overline{v}$ trigger
- Event selection:
 - Reconstruct 3 tracks with momentum measurement by the STRAW spectrometer
 - Total momentum consistent with beam *K*⁺, reconstruct decay vertex in FV: z in 107(111)-180 m
 - PID : use E/p and MUV3 to ID/veto muons
 - Photon Vetos : LAV, IRC, SAC, LKr
 - Tracks in time, measured with the CHOD
 - **Build invariant mass** $M(\pi \mu e)$
 - Signal region defined in $M(\pi \mu e)$ around the Kaon mass (resolution $\approx 1.4 MeV$)
 - For K-> $\pi^{-}\mu^{+}e^{+}$: additional cut to reduce the π^{0} Dalitz decays
 - Additional request for $\pi^0 \rightarrow \mu^- e^+ : M(\mu e)$ around π^0 mass

- •K->π⁻μ⁺e⁺
- •K->π+μ-e+
- K-> $\pi^+\pi^0$ $\pi^0 \rightarrow \mu^- e^+$

Trigger Efficiency

Normalization: multi-track (MT)

Signal: 3 trigger streams in OR logic with different downscaling factors

Trigger ε measured with minimum bias data The downscaling factors can vary during the data taking Here **D** is a typical value

Trigger stream	Description
Multi-track (MT)	3 tracks
Multi-track µ	3 tracks, E(LKr)>10GeV, at least 1 μ
Multi-track e	3 tracks, E(LKr)>20GeV

Single event sensitivity

Signal processes are normalized to the K⁺ $\rightarrow \pi^+\pi^+\pi^-$ channel, $B(K_{3\pi}) = (5.583 \pm 0.024)\%$

Number of Kaon decays in the FV:

i: data taking period

Normalization efficiencies

 $N_{\rm K} = (1.32 \pm 0.01) \times 10^{12}$

Downscaling factor of the multi-track trigger (used for the normalization channel) **Downscaling factor** of the signal trigger

 $\sum_{i} N_{3\pi}^{i} = 2.73 \times 10^{8}$

A_S: Signal acceptance ε_S: Signal trigger efficiency

$^+\mu^-e^+$	$\pi^0 \to \mu^- e^+$
0.02	3.11 ± 0.02
0.05	13.9 ± 0.9

Single Event Sensitivity of the order of 10⁻¹¹ -10⁻¹⁰

Background estimation

Background mechanisms:

- Mis-ID
 - Estimated with data samples:

 $e^{\pm} \Rightarrow \pi^{\pm}$ measured with $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \gamma$

 $\pi^{\pm} \Rightarrow e^{\pm}$ measured with $K^{+} \rightarrow \pi^{+/-} \pi^{-/+} \pi^{+}$

 $\pi^{\pm} \Rightarrow \mu^{\pm} \text{ and } \mu^{\pm} \Rightarrow e^{\pm}$

Measured with sample of MUV3 signals in time sidebands depends on track p and position at MUV3

• Decay in flight (DIF)

- $\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ or $\mu^{\pm} \rightarrow e^{\pm} \nu_{e}$
- Dalitz decay : $\pi^0 \rightarrow e^+e^-\gamma$ measured with simulation

Dedicated cut in π - channel, reduces acceptance wrt the μ ⁻ channel

$$K^+ \rightarrow \pi^+ \mu^- e^+$$

roberta.volpe@cern.ch

$$K^+ \rightarrow \pi^- \mu^+ e^+$$

$$\begin{array}{c|c} \mathbf{K}^{+} \to \pi^{+} \pi^{-} (\text{decay upstream FV}) \\ \begin{array}{c} \mathsf{mis-ID} \\ \bullet \\ \mathsf{e}^{+} \\ \mathsf{\mu}^{+} \mathsf{v}_{\mu} \end{array} \end{array} \begin{array}{c} \mathbf{K}^{+} \to \pi^{+} \\ \mathbf{DIF} \\ \bullet \\ \mu^{+} \mathsf{v}_{\mu} \\ \mu^{-} \mathsf{v}_{\mu} \end{array} \begin{array}{c} \mathbf{K}^{+} \to \mu^{+} \mathsf{v} \\ \mathsf{mis-ID} \\ \mu^{+} \mathsf{v}_{\mu} \\ \pi^{-} \end{array} \end{array} \end{array} \begin{array}{c} \mathbf{K}^{+} \to \mu^{+} \mathsf{v} \\ \mathsf{mis-ID} \\ \mathsf{mis-ID} \\ \mathsf{mis-ID} \end{array}$$

$K^+ \rightarrow \pi^- \mu^+ e^+$ results

Control Regions (CR1, CR2)

- Misidentification rate measured in data applied to the MC samples
- Open the control regions:

	$K^+ \to \pi^- \mu^+ e^+$		
	CR1	$\operatorname{CR2}$	
Predicted	1.68 ± 0.20	1.66 ± 0.26	
Observed	2	4	

$K^+ \rightarrow \pi^- \mu^+ e^+$ results

Source	$K^+ \to \pi^- \mu^+ e^+$
$K^+ \to \pi^+ \pi^+ \pi^-$	0.22 ± 0.15
$K^+ \to \pi^+ e^+ e^-$	0.63 ± 0.13
$K^+ \to \mu^+ \nu_\mu e^+ e^-$	0.13 ± 0.02
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	0.07 ± 0.02
$K^+ \to \pi^+ \mu^+ \mu^-$	0.01 ± 0.01
$K^+ \to e^+ \nu_e \mu^+ \mu^-$	0.01 ± 0.01
Total	1.07 ± 0.20
Number of observed events	0

$K^+ \rightarrow \pi^+ \mu^- e^+$ results

Control Regions (CR1, CR2)

• Misidentification rate measured in data applied to the MC samples

• Open the control regions:

$K^+ \rightarrow \pi^+ \mu^- e^+$ results

Control Regions (CR1, CR2) Signal Regio

Signal Region: 490–498 MeV

Open the signal region

Source	$K^+ \to \pi^+ \mu^- e^+$	$\pi^0 ightarrow \mu^-$
$K^+ \to \pi^+ \pi^+ \pi^-$	0.84 ± 0.34	0.22 ± 0
$K^+ \to \pi^+ e^+ e^-$	negl.	negl.
$K^+ \to \mu^+ \nu_\mu e^+ e^-$	negl.	negl.
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	0.05 ± 0.03	0.01 ± 0
$K^+ \to \pi^+ \mu^+ \mu^-$	0.02 ± 0.01	negl.
$K^+ \to e^+ \nu_e \mu^+ \mu^-$	0.01 ± 0.01	negl.
Total	0.92 ± 0.34	0.23 ± 0

Number of observed events	2	0

K+
$$\rightarrow \pi^{+/-}\mu^{-/+}e^+$$
 and $\pi^0 \rightarrow \mu$

$$\begin{split} K^+ &\to \pi^- \mu^+ e^+ : \quad n_{\rm bg} = 1.07 \pm 0.20 \,, \quad n_{\rm of} \\ K^+ &\to \pi^+ \mu^- e^+ : \quad n_{\rm bg} = 0.92 \pm 0.34 \,, \quad n_{\rm of} \\ \pi^0 &\to \mu^- e^+ \,: \quad n_{\rm bg} = 0.23 \pm 0.15 \,, \quad n_{\rm of} \end{split}$$

E865 at BNL: R. Appel et al.,

Phys. Rev. Lett. 85, 2877 (2000)

re+ results

- Counting experiment
- CLs treatment
- Upper limit at 90% C.L.:

K⁺ $\rightarrow \pi$ ⁻e⁺e⁺, K⁺ $\rightarrow \pi$ ⁻ μ ⁺ μ ⁺

roberta.volpe@cern.ch

$N_B = 0.91 \pm 0.41$

2017 Data

PLB 797 (2019) 134794

PANIC2021

Conclusions

Improved on previous searches by ~ one order of magnitude

NA62 has started the new data taking and will run till 2024 Stay tuned for new results

Limit at 90% CL $\mathcal{B}(K^+ \to \pi^- \mu^+ e^+) < 4.2 \times 10^{-11}$ $\mathcal{B}(K^+ \to \pi^+ \mu^- e^+) < 6.6 \times 10^{-11}$ $\mathcal{B}(\pi^0 \to \mu^- e^+) < 3.2 \times 10^{-10}$

Thank you

Trigger

Other background contributions

K+->
$$\pi^+\pi^0$$
, K+ $\rightarrow \pi^0$ e/μ v
 $\pi^0 \rightarrow e^+e^-\gamma$

 π -e⁺ pair calculated under the e⁻e⁺ mass hypothesis is required to exceed 140 MeV.

