

A new limit on the permanent electric dipole moment of the neutron (nEDM)

Collaboration Meeting, Mainz TRIGA Reactor, November 2019

G. Zsigmond on behalf of the **nEDM collaboration at PSI**

PAUL SCHERRER INSTITUT

nEDM collaboration at PSI

- UBel, Institute of Physics, Photonics Center, University of Belgrade, Serbia
- PTB, Physikalisch Technische Bundesanstalt, Berlin, Germany
- AEC, Albert Einstein Center for Fundamental Physics, Bern, Switzerland
- US, University of Sussex, Brighton, United Kingdom
- LPC, Laboratoire de Physique Corpusculaire, Caen, France
- JUC, Jagellonian University, Cracow, Poland
- HNI, Henryk Niedwodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
- FRAP, Université de Fribourg, Fribourg, Switzerland
- LPSC, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France
- UKY, University of Kentucky, Lexington, USA
- KUL, Katholieke Universiteit, Leuven, Belgium
- GUM, Institut für Physik, Gutenberg Universität, Mainz, Germany
- IKC, Institut für Kernchemie, Gutenberg Universität, Mainz, Germany
- PSI, Paul-Scherrer-Institut, Villigen, Switzerland
- ETHZ, Eidgenössische Technische Hochschule Zürich, Switzerland

 $H = -\mu \frac{\sigma}{|\sigma|} \mathbf{B} - d \frac{\sigma}{|\sigma|} \mathbf{E}$

Motivation: CP violation

E B

A nonzero particle EDM violates T, P and, assuming CPT conservation, also CP

- → A discovery or a highly improved constraint could contribute to our understanding of the baryon asymmetry of the universe.
- → Excellent probe for constraining the parameter space of theory models beyond the Standard Model.

Brief history of nEDM

Poster I. Rienäcker at PANIC2021

Difference of UCN precession frequencies in parallel/antiparallel B and E fields:

$$h \Delta f = 2d_{\rm n} \left(E_{\uparrow\uparrow} + E_{\uparrow\downarrow} \right) + 2\mu_{\rm n} \left(B_{\uparrow\uparrow} - B_{\uparrow\downarrow} \right)$$

2 measurements example:

 $\sigma_{d_n} < 10^{-24} \,\mathrm{e~cm} \longrightarrow \sigma_f < 10 \,\mu\mathrm{Hz}$ at 10 kV/cm $\longrightarrow \sigma_B < 0.2 \,\mathrm{pT}$ at 1 $\mu\mathrm{T}$

Geza Zsigmond

PAUL SCHERRER INSTITUT

Magnetic-field uniformity: Abel C et al. Phys. Rev. A 99 (2019) 042112

Abel C et al. Phys. Rev. A 101 (2020) 053419

magnetic-field changes: ¹⁹⁹Hg co-magnetometer

- array of optically pumped cesium vapor magnetometers
- offline B-field mapping

Compensate and correct for

Abel C et al., arXiv: 2103.09039v2 (2021)

Ramsey pattern analysis

Data taking strategy: Abel C et al. EPJ Web of Conferences 219, 02001 (2019)

Concept: add an *E*-field dependant shift to the neutron frequency by moving counts between detectors

First nEDM measurement using data blinding

Ayres NJ et al. EPJ A 57 (2021) 152

Crossing point analysis

PAUL SCHERRER INSTITUT

Effect	Shift	Error	(x10 ⁻²⁸ e cm)
Error on $\langle z \rangle$ Higher-order gradients \hat{G}	 "R. 69	7 10	Dedicated mapping
Transverse field correction $\langle B_T^2 \rangle$	0	5	measurements
Hg EDM [8]	-0.1	0.1	Constrained with — measurement at PTB
Local dipole fields $v \times F$ UCN net motion		4	Berlin
$v \times E$ OCN lift motion Quadratic $v \times E$		0.1	Cs Magnetometers
Uncompensated G drift		7.5	on HV electrode
Mercury light shift	•••	0.4	
Inc. scattering ¹³⁵ Hg		/ •	Not anticipated at
TOTAL	69	18	in n2EDM

Total systematic error 0.18 x 10⁻²⁶ e cm

Final result

New measurement:
(0.0 ± 1.1_{stat} ± 0.2_{sys}) × 10⁻²⁶ e cm
|d_n| < 1.8 × 10⁻²⁶ e cm (90% CL)
C. Abel *et al.* PRL **124**, 081803 (2020)

Previous measurement:

- $(-0.2 \pm 1.5_{\text{stat}} \pm 1.0_{\text{sys}}) \times 10^{-26} \text{ e cm}$
- |d_n | < 3 × 10⁻²⁶ e cm (90% CL)
- J. M. Pendlebury et al. Phys. Rev. D 92, 092003 (2015)

The design of the n2EDM experiment: Ayres NJ et al. Eur. Phys. J. C 81 (2021) 512

	nEDM 2016	n2EDM
Chamber	DLC and dPS	DLC and dPS
Diameter D	47 cm	80 cm – two chambers
N (per cycle)	15,000	121,000
Т	180 s	180 s
E	11 kV/cm	15 kV/cm
α	0.75	0.8
$\sigma(f_n)$ per cycle	9.6 μHz	$3.2\mu\text{Hz}$
$\sigma(d_n)$ per day	$11 \times 10^{-26} e \text{ cm}$	$2.6 \times 10^{-26} e \mathrm{cm}$
$\sigma(d_{\rm n})$ (final)	$9.5 \times 10^{-27} e \mathrm{cm}$	$1.1 \times 10^{-27} e \text{ cm}$

Poster S. Emmenegger PANIC 2021

Conclusion

- The measurement of a permanent electric dipole moment of the neutron, a CP-violating observable, is one of the most important experiments at the low energy frontier of particle physics
- New result of the nEDM collaboration at PSI:
 - $(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-26}$ e cm, our systematic error is a factor 5 improvement on previous measurement

Next phase n2EDM:

- a sensitivity of 1×10^{-27} e cm will be reached after 500 days of data taking
- possible future modifications are expected to lead to a sensitivity well within the 10⁻²⁸ e cm range

