ILC Higgs Physics Potential

Shin-ichi Kawada (KEK) on behalf of ILC IDT WG3 (ILC International Development Team)

PANIC2021 @ Online 2021/September/5-10

Why We Need Precision on Higgs?

- Until today: SM-like Higgs boson and no new physics
- But we know there are missing elements such as nature of dark matter, matter-antimatter asymmetry, neutrino mass, origin of EW symmetry breaking, etc, that cannot be explained by SM. Thus, we need new physics.
- Discovered Higgs boson is a window to new physics.
- Many new physics models predict small deviation from the SM (a few to 10%) ---> O(1%) level precision is necessary

Precision measurement on Higgs

The International Linear Collider (ILC)

 $-e^+e^-$ collider, $\sqrt{s} = 250$ GeV (upgradable to 500 GeV, 1 TeV) 2000 fb⁻¹ @ 250 GeV - polarized beam (e^{-} : $\pm 80\%$, e^{+} : $\pm 30\%$) 200 fb⁻¹ @ 350 GeV - clean environment, known initial state 4000 fb⁻¹ @ 500 GeV - matured technology, TDR published

Higgs Production at the ILC

 $\sqrt{s} = 250 \text{ GeV}$ Higgs-strahlung (Zh) dominant maximum cross section around 250 GeV ---> Higgs factory, O(1M) Higgs events

 $\sqrt{s} = 500 \text{ GeV}$ WW-fusion dominant improve many couplings access to Top-Yukawa, Higgs self-coupling

Key Point: Model Independence

- LHC: all measurements are $\sigma \times BR$
- ILC: $\sigma \times BR$ measurements + σ measurement

leptonic: J. Yan, et al., Phys. Rev. D **94**, 113002 (2016) hadronic: M. A. Thomson, Eur. Phys. J. C (2016) 76:72

Key Measurement: σ_{Zh}

Unique measurement at lepton colliders

leptonic & hadronic

$$M_X^2 = \left(p_{CM} - \left(p_{\mu^+} + p_{\mu^-} \right) \right)^2$$

- well-defined initial states

- without looking into Higgs (recoil mass technique)

Direct Higgs Observables at ILC250

 σ_{Zh}

 $\sigma_{Zh} \times BR(h \rightarrow bb)$

 $\sigma_{\nu\nu h} \times BR(h \rightarrow bb)$

 $\sigma_{Zh} \times \text{BR}(h \to WW^*)$

 $\sigma_{Zh} \times BR(h \rightarrow ZZ^*)$

 $\sigma_{Zh} \times BR(h \rightarrow \tau \tau)$

 $\sigma_{Zh} \times BR(h \rightarrow \gamma \gamma)$

 $\sigma_{Zh} \times BR(h \rightarrow \mu\mu)$

 $\sigma_{zh} \times BR(h \rightarrow invisible)$

QQ

 $\sigma_{Zh} \times BR(h \rightarrow cc)$

 $\sigma_{Zh} \times BR(h \rightarrow$

+ differential cross section \bigcirc : speciality of e^+e^- colliders

b- and c-likeliness for $h \rightarrow b\overline{b}, c\overline{c}, gg$, and other

arXiv:2003.01116 Matthew Basso's talk at LCWS2021

Performance of flavor tagging is essential for $h \rightarrow b\overline{b}$, $h \rightarrow c\overline{c}$, and $h \rightarrow gg$ study

Recent study: s-jet tagging for SM $h \rightarrow s\bar{s}$ and BSM $h \rightarrow c\bar{s}/\bar{c}s$ The first study report can be found <u>here</u>.

Tim Barklow, et al., Phys. Rev. D 97, 053004 (2018)

Higgs Coupling Determination in SMEFT Formalism

$$\begin{split} \Delta \mathcal{L} &= \frac{c_H}{2v^2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) + \frac{c_T}{2v^2} \left(\Phi^{\dagger} \overleftarrow{D^{\mu}} \Phi \right) \left(\Phi^{\dagger} \overrightarrow{D_{\mu}} \Phi \right) - \frac{c_6 \lambda}{v^2} \left(\Phi^{\dagger} \Phi \right)^3 \\ &+ \frac{g^2 c_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^{a\mu\nu} + \frac{4gg' c_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} B^{\mu\nu} \\ &+ \frac{g'^2 c_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g^3 c_{3W}}{m_W^2} \varepsilon_{abc} W^a_{\mu\nu} W^{b\nu}_{\rho} W^{c\rho\mu} \\ &+ i \frac{c_{HL}}{v^2} \left(\Phi^{\dagger} \overleftarrow{D^{\mu}} \Phi \right) \left(\overline{L} \gamma_{\mu} L \right) + 4i \frac{c'_{HL}}{v^2} \left(\Phi^{\dagger} t^a \overleftarrow{D^{\mu}} \Phi \right) \left(\overline{L} \gamma_{\mu} t^a L \right) \\ &+ i \frac{c_{HE}}{v^2} \left(\Phi^{\dagger} \overleftarrow{D^{\mu}} \Phi \right) \left(\overline{e} \gamma_{\mu} e \right) \end{split}$$

"Warsaw" basis

- gauge invariant
- Lorentz invariant
- CP conserving
- 23 parameters

10 EFT operators (h, W, Z, γ) : c_H , c_T , c_6 , c_{WW} , c_{WB} , c_{BB} , c_{3W} , c_{HL} , c'_{HL} , c_{HE} 5 EFT operators modifying h couplings to b, c, τ , μ , g2 EFT operators for contact interaction with quarks 4 SM parameters: g, g', v, λ 2 parameters for $h \rightarrow$ invisible and exotics

Observables in SMEFT

- In total: 39 observables
 - Electroweak Precision Observables (9)
 - Triple Gauge Coupling observables (3)
 - Higgs observables from LHC and ILC (3+12 × 2)
 - LHC: BR($h \rightarrow \gamma \gamma, \gamma Z, ZZ^*$)
 - ILC: multiplied by 2 because of beam polarization
- Systematics are considered in the global fit
- At the ILC, it is possible to determine all the 23 parameters simultaneously.

Model-independent Determination of Higgs Couplings

~1% or better precisions can be reached at ILC250 in a highly model-independent way.

More improvements and new results with ILC500.

> S1*: based on current results S2*: assume improvements in jet clustering, flavor tagging,,, (see backup for details)

Power of Beam Polarization

There are no drastic difference between precision with **2** ab⁻¹, polarized beam and precision with **5** ab⁻¹, unpolarized beam

at 250 GeV.

The polarization is very powerful, essentially compensating the advantage of large data set.

Comparison with HL-LHC Higgs Capabilities

Not simple comparison due to different framework.

---> add assumptions in EFT fit (model-dependent fit)
(1) no BSM decay of Higgs
(2) no anomalous couplings in hWW and hZZ

Great improvement at the ILC in many channels. Nice synergy with HL-LHC, typically in rare channel.

arXiv:1903.01629 Claude Dürig, DESY-THESIS-2016-027

Higgs Self-coupling

Higgs Self-coupling: What Happens If $\lambda_{hhh} \neq \lambda_{SM}$

- λ_{hhh} can be significantly enhanced in BSM such as EW baryogenesis models.
- Complementarity in $Zhh/v\bar{v}hh$ (and LHC): interferences different

Summary

- Precision measurement on Higgs is a window to new physics.
- Precise and highly model-independent measurements of Higgs boson are possible at the ILC under EFT framework.
- Many couplings can be reached ~1% precision at ILC250.
- Beam polarization is very powerful, essentially compensating × 2.5 luminosity.
- At ILC500 and above, top-Yukawa and Higgs self-coupling can be measured.

BACKUP

Processes toward Realization of ILC

* ICFA: international organization of researchers consisting of directors of world's major accelerator labs and representatives of researchers

* ILC pre-lab: International research organization for the preparation of ILC based on agreements among world's major accelerator labs such as KEK, CERN, FNAL, DESY etc.

Example of Deviation From SM

ILC Running Scenario

optimized scenario with considering Higgs/Top/New physics

~20 years running with energy range [250-500] GeV, beam polarization sharing

(iii.2.7) Top-Yukawa coupling

- largest Yukawa coupling; crucial role
- non-relativistic tt-bar bound state correction: enhancement by ~2 at 500 GeV
- Higgs CP measurement

Yonamine, et al., PRD84, 014033; Price, et al., Eur. Phys. J. C75 (2015) 309

arXiv:1506.07830	$\operatorname{sgn}(P(e^{-}), P(e^{+})) =$					
	(-,+)	(+,-)	(-,-)	(+,+)	sum	
luminosity $[fb^{-1}]$	40	40	10	10		
$\sigma(P_{e^-}, P_{e^+}) \text{ [nb]}$	83.5	63.7	50.0	40.6		
Z events $[10^9]$	2.4	1.8	0.36	0.29	4.9	
hadronic Z events $[10^9]$	1.7	1.3	0.25	0.21	3.4	=230xLEP, 8500xSLC

- Accelerator scenario 3.7Hz@M_z/2 + 3.7 Hz@125 GeV to produce positrons
- With 2625 bunches an instantaneous luminosity of 5x10³³ cm⁻²s-1 => 100 fb⁻¹ in 1.3 years after lumi upgrade
- More possible by improved damping rings and BDS system

The ILD Concept

- Compact design in a 5 T field
- Robust all-silicon tracking with excellent momentum resolution
- Time-stamping for single bunch crossings
- Highly granular calorimetry optimized for Particle Flow
- Integrated design: All parts work in tandem
- Iron flux return / muon identifier is part of SiD self-shielding

A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena

Observables To Couplings: κ -formalism (1)

(1) recoil mass technique --->
$$\sigma_{Zh}$$

(2) $\sigma_{Zh} ---> \kappa_Z ---> \Gamma(h \to ZZ^*)$
(3) *WW*-fusion measurement ---> $\kappa_W ---> \Gamma(h \to WW^*)$
(4) total width $\Gamma_h = \frac{\Gamma(h \to ZZ^*)}{BR(h \to ZZ^*)}$, or $\Gamma_h = \frac{\Gamma(h \to WW^*)}{BR(h \to WW^*)}$
(5) then all other couplings $\Gamma_h \times BR(h \to XX) ---> \kappa_X$

Simple, but **model-dependent** anomalous coupling is not considered

Observables To Couplings: κ -formalism (2)

assume $\zeta_Z = 0$ in κ -formalism: model-dependent

Synergy with HL-LHC

LHC meas.: BR(h-> $\gamma\gamma$)/BR(h->ZZ*), BR(h-> γ Z)/BR(h->ZZ*)

$$\delta\Gamma(h\to\gamma\gamma) = 528\,\delta Z_A - c_H + \dots$$

$$\delta\Gamma(h\to Z\gamma) = 290\,\delta Z_{AZ} - c_H \quad + \dots$$

$$\delta\Gamma(h \to ZZ^*) = -0.50\delta Z_Z - c_H + \dots$$

loop induced h->γγ/γZ provide two very strong constraints

Systematic Errors

- 0.1% from theory computations
- 0.1% from luminosity
- 0.1% from beam polarizations
- 0.1% \oplus 0.3%/sqrt(L/250) from b-tagging and analysis

S2 Assumption

- 10% improvement in signal efficiency of the jet clustering algorithm
- 20% improvement in the performance of the flavor tagging algorithm
- 20% improvement in statistics by including more signal channels in $\sigma_{Zh} \times BR(h \rightarrow WW^*)$
- a factor of 10 improvement in the precision electroweak input A_{LR} through the measurement of $e^+e^- \rightarrow \gamma Z$ with polarized beams at ILC250
- 30% improvement in the precision of Higgs self-coupling and top Yukawa coupling at ILC500

Power of TGC

30