

UNIVERSITA DEGLI STUDI DI TORINO

The CMS MTD **Endcap Timing Layer: Precision Timing with Low** Gain Avalanche Diode Sensors

Marta Tornago

on behalf of the CMS ETL group

22nd Particles and Nuclei International Conference

Vista Alegre / Beatriz Lammana

- ★ Precision timing at High-Luminosity LHC
- ★ The CMS MIP Timing Detector
- **★** The CMS Endcap Timing Layer
- ★ The ETL sensors
 - ✦ Laboratory mesurements: uniformity, no-gain area, timing resolution
 - ✦ Test beam results
- ★ The ETL read-out ASIC

• ETROCO and 1, specifications and test beam results \star Conclusions

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

Precision timing at High Luminosity LHC

At High Luminosity LHC instantaneous luminosity will increase of a factor ~ 5 *— 140-200* proton-proton collisions in each bunch crossing *— difficulties in object reconstruction and particle identification due to tracks coming from nearby vertices*

Need to add timing information to separate events overlapped in space but happening at different times ---- Creation of timing detectors providing **4D** tracking *— Minimum Ionizing Particle Timing Detector (MTD) for the CMS experiment*

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

The CMS MIP Timing Detector

Marta Tornago

Endcap Timing Layer (ETL)

Low Gain Avalanche Diodes with ASIC readout Total surface $14 m^2$ Hermetic coverage for $1.6 < |\eta| < 3.0$

MTD will improve reconstruction by:

- Collecting timing information on charged particles
- Combining tracking with timing
- Providing a timing resolution $\sigma_t \sim 30 40$ ps at the start of HL-LHC, barrel degrades to 50-60 ps at end of HL-LHC

— Mitigation of pile-up effect from HL-LHC

The CMS Endcap Timing Layer

- ETL will be placed on the HGCAL nose
- *Two disks* for each endcap, covered in silicon sensors on both sides
- Hermetic coverage for $1.6 < |\eta| < 3.0$

Marta Tornago

Ensure 2 hits for each track Single-hit resolution <50 ps $\sigma_{single\ hit} = \sqrt{\sigma_{sensor}^2 + \sigma_{readout}^2}$ with $\sigma_{sensor} \sim 30 - 40\ ps$ *Track resolution* <35 *ps*

Element						
1	Thermal screen					
	Gap between thermal screen and Face 1					
2	Face 1 - active layer					
3	Front disc					
4	Face 2 - active layer					
	Gap between Face 2 and Face 3					
5	Face 3 - active layer					
6	Back disc					
7	Face 4 - active layer					
	Gap between Face 4 and ETL front moderator					
8+9	Patch panels 0 + cables [9] + ETL front moderator					
10	ETL back support plate					
	Gap between ETL back support plate and CE thermal screer	l				

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

5th September 2021

The CMS ETL radiation environment

Marta Tornago

Maximum fluence reaches $2.5 \times 10^{15} n_{eq}/cm^2$ when a 50% safety factor is applied

1200

Only a small fraction of the detector surface will reach fluences higher than $1 \times 10^{15} n_{ea}^{1/2}$ after 1/2 lifetime

The CMS Endcap Timing Layer

ETL will contribute to maintain CMS present performance also in HL-LHC environment:

• Fill-factor (ratio between active and total detector area) > 95%

• Low occupancy (<0.1% low η , 1% highest η) to avoid double hits and ambiguous time assignment

• Radiation tolerance up to $1.7 \times 10^{15} n_{eq}/cm^2$ at $|\eta| = 3.0$ Large part of ETL will be exposed to less than $1 \times 10^{15} n_{ea}/cm^2$ ---- Only 12% of ETL surface will reach higher fluences **Operating temperature below -25°C**

• Design allowing to access the detector for maintenance *— Independent volume* isolated and operated separately from HGCAL

Marta Tornago

ETL sensors

ETL will be instrumented with Low Gain Avalanche Diodes (LGADs) optimized for timing measurements

LGADs are provided with a gain layer, a highly-doped thin layer near the p-n junction *— High local electric field producing charge multiplication — Moderate gain factor 10-30* to maximize signal/noise ratio

Sensor requirements:

- Pad size determined by occupancy and read-out electronics (rather large capacitance, 3-4 pF)
- Gain uniformity
- *Low leakage current* to limit power consumption and noise
- Provide large and uniform signals, >8 fC when new, >5 fC after highest irradiation point
- Minimized "no-gain" area, *interpad distance* < 50 μm

The final sensor will be a 50 μ m-thick 16×16 pad array with 1.3×1.3 mm² pads

Marta Tornago

Low Gain Avalanche Diode

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

5th September 2021

ETL sensor prototypes

R&D studies to define the details for the final ETL sensor design are ongoing Large size prototypes have been produced by different vendors: FBK (Italy), HPK (Japan)

Latest **FBK** production:

- gain layer implants with different doses and depths
- **Carbon** coimplantation in gain layer (enhanced radiation resistance)
- 9 layouts for the interpad design

Wafer #	Thickness	DEPTH	Dose Pgain	Carbon	Diffusion
1	45	Standard	0.98	1.*A	CH-BL
2	45	Standard	0.98	1*A Spray	CH-BL
3	45	Standard	0.98	0.8*A	CH-BL
4	45	Standard	0.98	0.4*A	CH-BL
7	55	Standard	0.98	1.*A	CH-BL
8	45	deep	0.70	1.*A	CBL
9	55	deep	0.70	1.*A	CBL
10	45	deep	0.70	0.6*A	CBL
11	45	deep	0.70		BL
12	45	deep	0.74	1*A	CBL
13	45	deep	0.74	0.6*A	CBL
14	45	deep	0.74	1.*A	СВН
15	55	deep	0.74	1.*A	СВН
16	45	deep	0.74	0.6*A	СВН
17	45	deep	0.74		BH
18	45	deep	0.78	Α	СВН
19	45	deep	0.78	0.6*A	СВН

Marta Tornago

Latest HPK production:

- 4 gain layer doses
- No Carbon coimplantation
- 4 layouts for the *interpad design*, 2 edges layouts

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

Laboratory measurements: uniformity

Devices are tested on wafer and after dicing with probe stations

- Breakdown distributions for every structure or pad
- current distributions of every single pad at a fixed value of bias • depletion voltage distributions of each pad, extracted from C(V) curves

— Latest LGAD productions are highly uniform and with low leakage current for both FBK and HPK *—* well within required specifications

More results of laboratory measurements on no-gain distance in the backup

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

For each wafer and device type we consider:

1x3 mm² pads

5th September 2021

1.3x1.3 mm² pads

Laboratory measurements: timing resolution

Sensor performances are benchmarked using very fast low noise electronics *results might be different with the ETL ASIC* Measurements performed with **Beta-source setups** based on **Sr90 sources** in Torino and at Fermilab Most performing prototypes can reach a timing resolution <40 ps up to fluences of 2.5e15 n_{eq}/cm^2

Time resolution vs Bias

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

5th September 2021

Test beam

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

Fermilab test beam facility:

- 120 GeV/c proton beam
- Trigger provided by independent scintillator
- **Precise tracking** performed with strips and pixels telescope
- Timing resolution measurements with high speed *Photek Micro-Channel Plate as reference providing* timestamp with 10 ps resolution
- **Cold box** with LGADs under test

Study of a limited number of sensors with high precision

5th September 2021

Test beam

Uniform timing resolution map with $\sigma_{\rm t} \sim 40 \text{ ps}$ for new devices Uniform hit efficiency reaching $\sim 100\%$ in new sensors and $\sim 99\%$ after irradiation

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

- LGADs are highly uniform and efficient, able to reach target resolution on large multi-pad arrays

FBK 2×8 array (first prototype sensor production) Irradiated 8e14 n_{eq}/cm^2

ETL read-out ASIC

The Endcap Timing Layer Read-Out Chip (ETROC) is the ETL read-out ASIC

Goal: reach time resolution $\sigma_t < 50$ ps per single hit

•Low noise and fast rise time

• Power budget: 1 W/chip, 3 mW/channel

Three prototype versions before the final full-size 16×16 chip: ✓*ETROC0* and *ETROC1* produced and tested ✓ *ETROC0*: single analog channel \checkmark ETROC1: full front-end with TDC and 4×4 clock tree → ETROC2 design in progress: full functionality + full size

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

ETROCO

- Jitter measurements agree with chip post-layout simulation
- Power consumption for preamp and discriminator consistent with expectation • 31 ps timing resolution achieved at FNAL test beam with ETROC0+LGAD

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

Goal: measure core front-end analog performance

ETROC1

- Uses ETROC0 front-end

- Achieved **TDC** resolution ~6 ps

Marta Tornago

ETROC1 is the second prototype version: 4x4 pixels + TDC

• ETROC TDC brand new design optimized for low power •Low power achieved using simple delay cells with self-calibration

40 *MHz noise observed on bump-bonded* ETROC1 + LGAD

- Coupled through the sensor due to 40MHz clock activity in the circular buffer memory
- The noise is very high and is suppressed by a discriminator threshold of $\sim 8 \text{ fC}$

under investigation

ETROC1

Marta Tornago

ETROC1 beam telescope at FNAL test beam facility

From preliminary analysis of the data from ongoing beam test at FNAL, the total time resolution per hit *for each LGAD+ETROC1 layer has reached:*

$\sigma_{\rm i} \sim 42-46~{\rm ps}$

Conclusions

The CMS Endcap Timing Layer will perform precise timing measurements of charged particles with single-hit timing resolution < 50 ps, allowing the CMS detector to maintain its excellent performances in the very challenging environment of the HL-LHC

ETL will be instrumented with thin Low-Gain Avalanche Diodes (LGADs) read-out by ETROC ASIC

- * Highly uniform sensors: low leakage currents, good gain, uniform breakdown voltage * Timing resolution < 40 ps up to the end of lifetime
- **TROC1** is the second prototype version: 4x4 pixels + low-power TDC : **42-46 ps time resolution** measured at FNAL beam test ETROC2 design in progress (submission in 2022)

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

The latest LGAD productions have been measured both in the laboratory and at test beams, to ensure they meet all the specifications:

* Test beam results show 100% efficiency and uniform timing resolution across the whole active area of large LGAD arrays

• The Endcap Timing Layer Read-Out Chip (ETROC) is required to consume low power while providing excellent timing performances

From R&D studies to the Endcap Timing Layer

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

ETL services

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

No-gain area and floating pad resiliency

Too narrow "No-gain" distances produce early breakdowns as floating pad resiliency gets worse

Marta Tornago

Need a compromise for interpad width:

• Narrow enough to allow ETL reaching >95% fill factor

• Large enough to avoid early breakdown due to bad *floating pad resiliency*

Laboratory measurements: no-gain area

"No-gain" width measured with Particulars Transient Current Technique setup

- ---- 1D scan with a 1060 nm picosecond laser with ~10 μm spot along the optical window between two pads
- ---- Charge vs laser position fitted with an S-curve: convolution of gain layer step function and laser gaussian beam profile

Marta Tornago

Interpad area is evaluated as the distance between the points at 50% of the S-curve maximum for the two measured pads

Laboratory measurements: no-gain area

	Type (IP)	<u>Vbias</u>	No-gain [µm]	Fill factor	# Floating pad without effect in 2x2
UFSD3.2	T4	230	35.0	94.6%	?
UFSD3.2	T8	230	40.5	93.9%	?
UFSD3.2	T10	200	68.0	89.8%	?
HPK2	IP3	220	64.2	90.4%	2
HPK2	IP4	220	91.1	86.5%	all
HPK2	IP5	220	101.8	85%	all
HPK2	IP7	220	120.4	82.4%	all

Smaller interpad designs:

- Allow better fill factor for ETL
- Provide worse protection from missing bumps

Need to perform the study after irradiation

Marta Tornago

No-gain area width results from measurements on the latest productions

Laboratory measurements: timing resolution setups

Results on FBK production obtained at **Fermilab SiDet Laboratory** with a setup equipped with a Sr90 source, DUT mounted on a cooling **block** and an **MCP** used as time reference and trigger

Marta Tornago

The CMS MTD Endcap Timing Layer: Precision Timing with Low Gain Avalanche Diode Sensors

Measurements on FBK production performed with the Torino Beta-source setup based on a Sr90 source and provided with a DUT+trigger telescope in a climate chamber and an automated DAQ and analysis system

