

UNIVERSIDADE Ð COIMBRA

INTRODUCTION

XENON SCINTILLATION HAS BEEN WIDELY USED IN RECENT PARTICLE PHYSICS EXPERIMENTS [1-3]. HOWEVER, INFORMATION ON PRIMARY SCINTILLATION YIELD IN THE ABSENCE OF **RECOMBINATION IS STILL SCARSE AND DISPERSED. THE MEAN** ENERGY REQUIRED TO PRODUCE A VACUUM ULTRAVIOLET (VUV) PHOTON (W_{SC}-VALUE) IN GASEOUS XENON HAS BEEN MEASURED IN THE RANGE OF 30-120 EV, [4] AND REFERENCES THEREIN. LOWER W_{sc} -VALUES ARE OFTEN REPORTED FOR α - PARTICLES COMPARED TO ELECTRONS PRODUCED BY γ - OR X-RAYS, BEING THIS DIFFERENCE NOT UNDERSTOOD. THEREFORE, WE PERFORMED A SYSTEMATIC STUDY FOR THE W_{SC}-VALUE IN XENON, USING A GAS PROPORTIONAL SCINTILLATION COUNTER (GPSC).

EXPERIMENTAL SETUP

THE GPSC HAS A 3.6-CM THICK ABSORPTION REGION AND A 1-CM THICK ELECTROLUMINESCENCE REGION. THE FORMER IS DELIMITED BY THE DETECTOR ENTRANCE WINDOW AND THE GATE WIRE-GRID, WHILE THE LATTER IS ESTABLISHED BETWEEN THE GATE AND THE ANODE-GRID, PLACED JUST ABOVE THE PHOTOSENSOR, A 2" PHOTOMULTIPLIER TUBE (PMT). A FIELD CAGE ACCOUNTS FOR ELECTRIC FIELD UNIFORMITY ALONG THE FULL ABSORPTION REGION. THE W_{SC}-VALUE WAS MEASURED FOR X-RAYS (5.9-25 KEV) AND α -PARTICLES (2.3 MEV) FROM ²⁴⁴CM, ⁵⁵FE, ¹⁰⁹CD AND ¹⁴¹AM COLLIMATED RADIOACTIVE SOURCES. WAVEFORMS PRODUCED AT

THE PMT OUTPUT WERE RECORDED WITH BEING THE SECONDARY SCINTILLATION USED AS THE TRIGGER.

PRIMARY SCINTILLATION YIELD IN XENON FURTHER EXPERIMENTAL STUDIES

Cristina M.B. Monteiro ¹,^{*}, J.M.R Teixeira ¹, P.A.O.C. Silva ¹, R.D.P. Mano ¹, D. González-Díaz ², C. A. O. Henriques ¹ LIBPhys, Physics Department, University of Coimbra, Portugal ² Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Spain

* cristinam@uc.pt

ANALYSIS METHODOLOGY

entrance window

field cage

gate grid

anode grid

2 cm

THE PRIMARY SCINTILLATION SIGNAL (S1) IS ABOUT 3 ORDERS MAGNITUDE SMALLER THAN THE SECONDARY SCINTILLATION SIGI (S2), HARDLY DISTINGUISHABLE FROM THE ELECTRONIC NO THEREFORE, WE RELY ON THE AVERAGE WAVEFORM COMPU FROM SEVERAL X-RAY EVENTS TO CANCEL OUT THE BASEL FLUCTUATIONS. FOR α -particles the stronger S1 enables W_{SC} MEASUREMENT ON A EVENT-BY-EVENT BASIS, ALLOWING CROSSCHECK THE AVERAGE WAVEFORM METHOD. AS AN EXAM WE SHOW THE AVERAGE WAVEFORM OBTAINED FROM 1 MILLION 14.3-KEV X-RAY EVENTS:

THE ANALYSIS METHODOLOGY CAN BE SUMMARIZED AS FOLLOWS: 1. X-RAY ENERGIES ARE SELECTED USING THE S2-INTEGRAL DISTRIBUTION.

- 2. THE ELECTRON DRIFT VELOCITY IS COMPUTED FROM THE TIME ELAPSED BETWEEN S1 AND S2, ENABLING TO PRESENT THE AVERAGE WAVEFORM AS A FUNCTION OF DISTANCE.
- 3. THE WAVEFORM IS CORRECTED FOR THE DETECTOR GEOMETRICAL EFFICIENCY (GE) OBTAINED FROM GEANT4-SIMULATION.
- 4. THE S1 EMISSION IS INTEGRATED ALONG THE FIRST 2 CM OF DEPTH.
- 5. FINALLY, THIS VALUE IS CORRECTED FOR THE BASELINE OFFSET AND FOR THE RATIO OF INTERACTIONS OCCURRING WITHIN THE INTEGRATION REGION, WHICH IS ESTIMATED FROM THE THEORETICAL X-RAY ABSORPTION LAW.

EXAMPLE: S1 INTEGRATION OF THE GE-CORRECTED WAVEFORM:

RESULTS

OF	Energy (keV)	w _{sc} (eV)	error (sta./sys.)
ΝΑΙ	5.9 (Mn K-s)	50.1	10% / 25%
	9.4 (Pt L-α)	40.2	15% / 25%
JISE.	14.3 (Pu L-α)	43.1	10% / 25%
JTED	18.1 (Pu L-β1,β2)	43.8	12% / 25%
LINE	21.5 (Pu L-Υ)	45.9	15% / 25%
THE	22.0 (Ag k-α)	44.5	10% / 25%
TO	25.0 (Ag k-β1,β2)	50.0	15% / 25%
٨PIF	2300 (α, average method)	46.6	5% / 25%
	2300 (α, per-event method)	46.5	5% / 25%

THE W_{SC}-VALUES OBTAINED FOR ELECTRONS PRODUCED BY X-RAYS ARE CONSIDERABLY LOWER THAN THE VALUES REPORTED IN THE LITERATURE (120-60 KEV [4]) AND ARE SIMILAR TO THE VALUES OBTAINED FOR α -PARTICLES. THE S2 YIELDS (NOT SHOWN HERE) ESTIMATED USING THE SAME METHODOLOGY ARE IN GOOD AGREEMENT WITH SIMULATIONS [4], WITHIN A 10%-DIFFERENCE. THIS RESULT, TOGETHER WITH THE GOOD AGREEMENT BETWEEN AVERAGE AND EVENT-BY-EVENT METHODS OBSERVED FOR α -particles DEMONSTRATES THE RELIABILITY OF OUR ANALYSIS AND GE SIMULATION MODEL.

CONCLUSIONS

DESPITE THE LARGE UNCERTAINTIES (BEING IMPROVED) WE MAY CONCLUDE THAT THE W_{sc} -VALUE DOES NOT SIGNIFICANTLY DEPEND NEITHER ON THE NATURE OF THE INTERACTING PARTICLE NOR ON ITS ENERGY.

REFERENCES

- [1] E. APRILE, ET AL. (XENON), EUR. PHYS. J. C 77 (2017), 881.
- [2] D. S. AKERIB, ET AL. (LUX-ZEPLIN), PHYS. REV. D 101 (2020), 052002.
- [3] P. FERRARIO, ET AL. (NEXT), JHEP 10 (2019), 052.
- [4] C. D. R. AZEVEDO, ET AL., JINST 11 (2016), C02007.

ACKNOWLEDGEMENTS

This work has been funded by FCT – Fundação para a Ciência e Tecnologia, Lisbon, Portugal.

REPÚBLICA PORTUGUESA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

C MPETE 2020 PORTUGAL UNIÃO EUROPEIA 2020 2020 FORTUGAL UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional