

22nd edition PANIC Lisbon Portugal Particles and Nuclei International Conference

The STAR Forward Upgrade

Carl Gagliardi

Texas A&M University

for the STAR Collaboration

Supported in part by:

STAR Forward Upgrade - PANIC2021 - Carl Gagliardi

Outline

- What is it?
- What is the current status?
- What science will it do?

What is the STAR Forward Upgrade?

The STAR detector

- TPC provides tracking for $|\eta| < 1.5$
- Particle identification with dE/dx combined with Time-of-Flight
- Surrounded by electromagnetic calorimetry covering $-1 < \eta < 4$
- Complemented by many ancillary subsystems

The STAR Forward Upgrade

- Covers the pseudorapidity region 2.5 < η < 4 where *STAR* formerly only had Pb-glass electromagnetic calorimetry
 - Rapidity coverage is the same as the EIC hadron arm
- Combines:
 - Charged particle tracking using Si detectors and small-strip Thin Gap Chambers (sTGC)
 - Electromagnetic and hadronic calorimetry with SiPM readout and new ADC+trigger electronics
- Will measure h^{+/-}, e^{+/-} (with good e/h discrimination), photons, π⁰, jets

Detector	pp and pA	AA
ECal	~10%/VE	~20%/√E
HCal	~50%/VE+10%	
Tracking	charge separation	0.2 <p<sub>T<2 GeV/c</p<sub>
	photon suppression	with 20-30% 1/p _T

Silicon detector

- Three disks, each with 12 modules
- Each module includes 3 single-sided double-metal mini-strip sensors (Si from Hamamatsu)
 - Fine granularity in φ and coarse in R
- Material budget ~1.5% X₀ per disk
- Technology is similar to STAR Intermediate Silicon Tracker
 - Same APV25-S1 front-end chip
 - Reusing the IST data acquisition and cooling systems
- Installed in **STAR** last month; under commissioning at present

Silicon detector

- Three disks, each with 12 modules
- Each module includes 3 single-sided double-metal mini-strip sensors (Si from Hamamatsu)
 - Fine granularity in φ and coarse in R
- Material budget ~1.5% X₀ per disk
- Technology is similar to STAR Intermediate Silicon Tracker
 - Same APV25-S1 front-end chip
 - Reusing the IST data acquisition and cooling systems
- Installed in *STAR* last month; under commissioning at present

Small-strip Thin Gap Chambers

- Four planes, each consisting of four pentagonal modules
 - Double-sided sTGC with diagonal strips give x, y, u in each layer
 - Position resolution < 200 μm
- Material budget ~0.5% X₀ per layer
- Readout based on VMM chips
- Similar to the ATLAS sTGC system
- Final assembly onto its mounting frame underway
 - Will be mounted in position late this month
- STAR Forward Upgrade PANIC2021 Carl Gagliardi

Small-strip Thin Gap Chambers

- Four planes, each consisting of four pentagonal modules
 - Double-sided sTGC with diagonal strips give x, y, u in each layer
 - Position resolution < 200 μm
- Material budget ~0.5% X₀ per layer
- Readout based on VMM chips
- Similar to the ATLAS sTGC system
- Final assembly onto its mounting frame underway
- Will be mounted in position late this month STAR Forward Upgrade - PANIC2021 - Carl Gagliardi

Electronics under test

sTGC gas system

Gas cabinet

Front of the controls cabinet

Gas distribution panel

- sTGCs use a mixture of CO₂ and n-pentane
- Gas system has passed BNL flammable gas safety reviews
- Was used this spring to provide gas to a 60 x 60 cm² sTGC prototype module that was operated in *STAR*
- Ready for operation with the full sTGC system

Simulated performance of the Forward Tracker

- Charge mis-ID rate less than 6% (8%) for $p_T < 5$ GeV/c and $v_s = 500$ GeV (200 GeV)
- p_T resolution better than 35% for $p_T < 5$ GeV/c for both beam energies

Forward Calorimeter System (FCS).

• 7 m from the center of *STAR*

- Split into 2 movable halves
- Slightly projective
- ECal:
 - Reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: 5.52 x 5.52 x 33 cm³
 - 66 sampling cells with 1.5 mm Pb / 4 mm Sc
 - 36 wavelength-shifting fibers per cell
 - 18 X₀; 0.85 nuclear interaction lengths
 - Replaced PMTs with SiPM readout
- HCal:
 - Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: 10 x 10 x 84 cm³
 - Approximately 4.5 nuclear interaction lengths
 - Uses same SiPM readout as ECal
 - Developed in collaboration with EIC R&D
- Preshower:
 - Split signals off from **STAR** EPD for triggering

Forward Calorimeter System (FCS).

- Entire FCS (ECal + HCal + electronics) was installed during 2020
 - Commissioned during recent RHIC run
 - Extensive running with Au+Au at $Vs_{NN} = 7.7 \text{ GeV}$
 - Brief runs with O+O and d+Au at $\sqrt{s_{NN}}$ = 200 GeV

- 7 m from the center of *STAR*
 - Split into 2 movable halves
 - Slightly projective
- ECal:
 - Reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: 5.52 x 5.52 x 33 cm³
 - 66 sampling cells with 1.5 mm Pb / 4 mm Sc
 - 36 wavelength-shifting fibers per channel
 - 18 X₀; 0.85 nuclear interaction lengths
 - Replaced PMTs with SiPM readout
- HCal:
 - Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: 10 x 10 x 84 cm³
 - Approximately 4.5 nuclear interaction lengths
 - Uses same SiPM readout as ECal
 - Developed in collaboration with EIC R&D
- Preshower:
 - Split signals off from **STAR** EPD for triggering

Forward Calorimeter System (FCS)

FCS readout and commissioning

Ecal View from Back

LED mapping check

Online monitoring plots during 7.7 GeV Au+Au

- During the recent RHIC run, we:
 - Exercised the on-line machinery, monitoring systems, and slow controls
 - Off-line and Monte Carlo machinery also in place
 - Trigger system was commissioned
- Analysis of the O+O data is underway

FCS readout and commissioning

Ecal View from Back

LED mapping check

Online monitoring plots during 7.7 GeV Au+Au

- During the recent RHIC run, we:
 - Exercised the on-line machinery, monitoring systems, and slow controls
 - Off-line and Monte Carlo machinery also in place
 - Trigger system was commissioned
- Analysis of the O+O data is underway

• FCS is ready for data taking

What science will the STAR Forward Upgrade enable?

STAR Forward Upgrade physics program

Forward-rapidity: 2.5 < η < 4

A+A

Beam: Full Energy AuAu

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η~4
- Longitudinal decorrelation up to η~4
- Global Lambda
 Polarization
- → strong rapidity dependence

p+p & p+A

Beam: 500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

- Sivers asymmetries for hadrons, (tagged) jets, and di-jets
- TMD measurements at high x transversity → tensor charge
- GPD E_g: gluon spinorbit correlations
- Gluon PDFs for nuclei
- R_{pA} for direct photons
 & DY
- Test of Saturation predictions through di-hadrons, γ-Jets

- Observables:
 - Charged and neutral hadrons
 - Inclusive jets and di-jets
 - Hadrons in jets
 - Photons
 - Drell-Yan and J/Ψ di-electrons
 - Lambda's
 - Mid-forward and forward-forward rapidity correlations
- Running periods:
 - **STAR** alone:
 - 500 GeV polarized *pp*: 20 week run starts November 15
 - **STAR** in parallel with sPHENIX:
 - 2023 and 2025: 200 GeV Au+Au
 - 2024: 200 GeV polarized *pp* and *p*+Au

Transverse momentum dependent PDFs and FFs

Sivers effect:

Unpolarized partons with a spin-dependent intrinsic k_{τ}

Non-universal: Sign change between initialand final-state interactions **Collins effect:**

Correlation between the polarization of a scattered quark and the momentum of a hadron fragment transverse to the quark momentum. Requires quark transversity.

Believed to be universal

- Before **STAR**, TMDs came only from fixed target ep data: high x and low Q^2
 - Need measurements at high Q^2 and a broad x range
- **STAR** mid- plus forward rapidity provides excellent kinematic overlap with future EIC measurements
 - Forward upgrade provides access to quarks up to x ~ 0.5 and gluons down to x ~ 0.005
 - Need high precision data in pp and DIS@EIC to establish universality of TMDs

Inclusive transverse spin asymmetries at forward rapidities

STAR, PRD 103, 092009

Predicted asymmetries for $\pi^{+/-}$ from Kanazawa et al, PRD 89, 111501

- Described by an interplay of initial-state Sivers distribution or its Twist-3 analog, the Efremov-Teryaev-Qiu-Sterman (ETQS) function, and final-state Collins effect or the related Twist-3 function H_{FU}
- A_N for h^{+/-}, direct photon, and π⁰ can constrain the evolution and flavor dependence of the ETQS distribution and determine the role of H_{FU}

TMDs at forward rapidity

- **STAR** finds A_N lower for non-isolated π^0 and higher multiplicity EM-jets
 - Provide substantial constraints on the Sivers effect at high x
 - Additional mechanism to produce large A_N for isolated π^0 ?
- **STAR** has also measured small Collins asymmetry for π^0 in EM-jet (not shown)
- **STAR** Forward Upgrade will enable forward rapidity asymmetry measurements of charged-tagged jets and di-jets, hadron in jet Collins asymmetry, and diffractive processes with rapidity gaps

How well can the Forward Upgrade do?

- A_N for full jet reconstruction, combined with charge-sign tagging of a hadron fragment with z > 0.5
 - Projected statistical uncertainties drawn on twist-3 predictions from Gamberg et al
 - Up to 10 σ separation between plus-tagged and minus-tagged jet $A_{\scriptscriptstyle N}$

Di-jet Sivers effect

- **STAR** has performed the first ever observation of the Sivers effect in di-jet production
- Mid-rapidity results at $\sqrt{s} = 200$ GeV show that up and down quarks have opposite sign spin-dependent $\langle k_T \rangle$
 - $\langle k_T \rangle_d \simeq -2 \langle k_T \rangle_u$
 - Gluon+sea quarks have $\langle k_T \rangle \simeq 0$

•
$$\eta^{\text{total}} = \eta_1 + \eta_2 \sim \ln(x_1/x_2)$$

- Mid-rapidity STAR only covers $|\eta_1 + \eta_2| < 3$
- Forward upgrade will provide access to $|\eta_1 + \eta_2| \sim 6$
 - Sample much higher (and lower) x values

Collins effect at high x

- Extending Collins asymmetry measurements to forward rapidities provides direct access to transversity in the region 0.3 < *x* < 0.5
 - Has never been explored in SIDIS
 - Essential to constrain experimental measurements of the nucleon tensor charge
- Will simultaneously perform measurements with similar uncertainties of the "Collins-like" asymmetries to access linearly polarized gluons in transversely polarized protons down to x ~ 0.005 STAR Forward Upgrade - PANIC2021 - Carl Gagliardi

Collins effect at high x

- Extending Collins asymmetry measurements to forward rapidities provides direct access to transversity in the region 0.3 < x < 0.5
 - Has never been explored in SIDIS
 - Essential to constrain experimental measurements of the nucleon tensor charge
- Will simultaneously perform measurements with similar uncertainties of the "Collins-like" asymmetries to access linearly polarized gluons in transversely polarized protons down to x ~ 0.005 STAR Forward Upgrade - PANIC2021 - Carl Gagliardi

Generalized parton distribution E_g

- Exclusive $J/\Psi A_N$ in 200 GeV ultra-peripheral p+Au collisions is sensitive to the GPD E_a
 - $Q^2 \sim 10 \text{ GeV}^2$; $10^{-4} < x < 10^{-1}$
 - GPD E_q determines gluon spin-orbit correlations in the proton
- **STAR** performed a proof-of-principle measurement with the TPC during 2015
- **STAR** Forward Upgrade will enable measurement at smaller $W_{\gamma p}$, where both the cross section and the signal are expected to be much larger

Nuclear parton distribution functions

- The Forward Upgrade will enable measurements of R_{pAu} for direct photon and Drell-Yan production at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Direct photons will constrain the nuclear gluon distribution over 0.0025 <~ x <~ 0.025
 - Drell-Yan di-electrons will constrain the nuclear sea quark distribution over 0.001 <~ x <~ 0.01

Nuclear parton distribution functions

- Precision measurements of nuclear gluon and sea quark distributions
 - Essential for a stringent test of nPDF universality at EIC

Probing non-linear effects in QCD

- Forward rapidities at *STAR* provide the unique opportunity to investigate very high gluon densities with an unambiguous probe
 - Disappearance of the backward jet in p+A
- **STAR** π^0 π^0 correlations find:
 - Strong suppression at low \boldsymbol{p}_{T} in p+A where gluon saturation is expected
 - No suppression at high p_T (larger x) outside the non-linear domain
- Such hadro-production measurements are essential to explore the fundamental universality of non-linear effects at EIC
- Forward Upgrade will enable similar studies in $h^{+/-}-h^{+/-}$, di-jets, and γ -jet

STAR Forward Upgrade - PANIC2021 - Carl Gagliardi

Flow measurements in Au+Au to constrain η/s

- η/s is expected to be smallest in the RHIC energy regime
- Flow measurements at forward rapidity are sensitive to the temperature dependence of η/s
- **STAR** Forward Upgrade measurements will be far more precise than previous PHOBOS measurements

Constrain the longitudinal structure of the initial state

 $r_n(\eta_a, \eta_b) = V_{n\Delta}(-\eta_a, \eta_b)/V_{n\Delta}(\eta_a, \eta_b)$ where $V_{n\Delta}$ is the Fourier coefficient calculated with pairs of particles in different rapidity ranges

- r_n is sensitive to different initial state inputs
 - 3D glasma model: weaker decorrelation, describes CMS r₂, but not r₃
 - Wounded nucleon model: stronger decorrelation than seen in the data
- Precise measurement over a wide rapidity window will provide a stringent constraint

Global vorticity transfer

- How is the global vorticity transferred to the fluid?
- How does the local thermal vorticity of the fluid get transferred to spin angular momentum?
- Rapidity dependence of A global polarization will probe the nature of the global vorticity transfer
 - Initial geometry and local thermal vorticity + hydro predict opposite trends

Conclusion

- The STAR Forward Upgrade will be ready for physics when the upcoming RHIC run begins on November 15
- The STAR Forward Upgrade will enable a wide range of high-impact measurements in polarized *pp* collisions, in polarized and unpolarized *p*+Au collisions, and in Au+Au collisions

Stay tuned!