Improving spatial resolution in neutron detectors with submicrometric B₄C layers: Monte Carlo simulation results

N. Duarte¹, J.S. Marcos¹ and F.D. Amaro¹

¹LIBPhys – University of Coimbra, Physics Department, Portugal

LIBPhys-UC

Limitations of gaseous boron PSND

Total

7

5

x (mm)

 α particle ⁷Li particle

9

10

Modern neutron research facilities rely on high performance position sensitive neutron detectors (PSND), in aspects such as detection efficiency, counting rate capability and **spatial resolution**.

Most PSND use solid boron, detecting the heavy charged fission fragments (α and ⁷Li) produced when a neutron is captured by the ¹⁰**B** isotope: Prob. density

 ${}^{10}_{5}B + n \rightarrow {}^{7}_{3}Li^{*}(0.84 \text{ MeV}) + {}^{4}_{2}\alpha (1.47 \text{ MeV})$ Ranges (x-projection) -

The range of the secondary particles can extend **up to ~8 mm** (1D projection), leaving a long track of electrons as they traverse the counting gas.

In some cases, this is the major source of uncertainty in the determination the neutron capture site, limiting spatial resolution.

