Recent developments of the SDHCAL prototype

Gérald Grenier on behalf of SDHCAL collaboration PANIC 2021

IP2I/IN2P3/CNRS/Université Lyon 1

September 8th 2021

Introduction	The SDHCAL 00000		

SDHCAL

- The Semi-Digital Hadronic CALorimeter
- One of two options proposed for ILD.

Introduction The SDHCAL The concept The active unit Test beam results First results New results New R&D Completing ILD design Beyond ILD Conclusion

SDHCAL collaboration within CALICE collaboration

France IP2I, LPC, OMEGA

Spain CIEMAT

Belgium Ghent University

China SJTU

Korea GWNU

	The SDHCAL		
	0000		
The concept			

The Semi-Digital HCAL in brief

- Sampling calorimeter.
- Glass-RPC detectors as sensitive medium with embedded readout electronics providing 1cm² lateral segmentation.
- Design for Particle Flow Analysis (PFA).
- An ingenious mechanical structure.
- Member of the CALICE technology family.

Challenges

- Homogeneity for large surface.
- Active detector thickness of only few mm.
- Services from one side.
- Embedded electronics.
- Low power consumption.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

	The SDHCAL O●000		
The concept			

The SDHCAL prototype

A technological prototype with up to 50 GRPCs of 1 m^2 conceived as a demonstrator.

- Self-supporting stainless-steel structure.
- Up to 50 slots to insert GRPC cassette.
- Cassette = GRPC+embedded electronics+ steel cover (11 mm thick).
- 1 m² GRPC read by 1 cm² readout pads.
- ▶ $96 \times 96 \times 50$ channels for the full Prototype = 460800 channels.
- Less than 1‰ dead channels.
- All services on one side.

	The SDHCAL ○○●○○		
The active unit			

Chamber cross-section view

- ▶ 1 m² GRPC.
- Saturated avalanche mode : spatial charge distribution on glass anode $\sim 1 \text{ mm}^2$.
- Read by 1 cm² copper pads : max particle density in shower ~ 100/cm² : 3 readout thresholds.
- Embedded readout electronics.

Total thickness: 6.0 mm.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

	The SDHCAL		
	00000		
The active unit			

Readout electronics

	Q	Q,	٩Q,	Ū,	۳Q,	O)	Q,	Q,	*O	Q,	aÖ.	C);
	Q,	Û	O	Û	Û	Ű	ö.	Ω	$\dot{\Omega}$	Ċ	$^{\odot}$	0°
	ŵ	$\overline{\Omega}$	\mathbf{O}	\mathbf{O}	Ũ	$\mathbf{U}_{\mathbf{p}}^{i}$	Ð.	\Box	Ω	\mathbf{O}	${\bf C}^{\prime}$	Ũ,
	ΰ	۳Ŭ'	Ũ	зŪ,	Ũ	ΨŬ	ΰr	°O'	ΰŕ	°O'	\mathbf{O}^{\prime}	°Oʻ
Ŀ	77	Ŭ,	*01	Ū,	*07	Ŭ,	T	\mathbf{U}^{\prime}	*07	Ū,	*0)	ũ;
5	Ŭ	Ũ	O	Û	Û	Ŭ	ġ,	Ũ	Û	Û	\odot	Ŭ
	ð	Ū,	Û	Û	Û	$O_{\mathbf{s}}^{i}$	þ.	\bigcirc	Û	Û	Ω	Ω_{i}^{i}
	ò	°O'	0ŕ	°O'	Q,	۰O	ò	°O'	Ċ)'	°O'	Ω^{\prime}	°Oʻ
Ŀ	Ų	Q	*()'	Q,	۳Q	O,	ÿ	Q'	°D,	Q,	°O,	C);
8	Ċ,	Û	Û	Û	O	Ŭ	Q,	O	Û	Û	\odot	0 ⁱ
	ö	Û	Û	Û	Û	Ū,	þ.	Û	Û	Û	\odot	\mathbf{O}_{i}
	ΰ	ð	ΰ	°Û'	Ũ	۳Ċŕ	ΰr	°U'	\tilde{U}	*O	\mathbf{O}^{*}	°0'

ASICs=HARDROC2

- Each ASIC reads 64 copper pads,
- Amplification, shaping, 3-level discriminator (dynamic range 10 fC to 30 pC), triggerless : store up to 127 first threshold crossing (pad ID and time (200 ns clock))
- Daisy-chained (data readout, configuration)
- Semi-digital readout (2-bit, 3 thresholds).

3 DIF (Detector InterFace boards) to read 1 $\ensuremath{\mathsf{m}}^2.$

	The SDHCAL		
	00000		
The active unit			

SDHCAL power pulsing

Tests in 3T magnetic field

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	The SDHCAL 00000	Test beam results ●○○○○	
First results			

Event displays

Events recorded at beam tests

イロト イヨト イヨト イヨト

	The SDHCAL	Test beam results	
		0000	
First results			

Energy reconstruction

CERN SPS H2 and H6 beam line

	The SDHCAL	Test beam results ○○●○○	New R&D 000000	
New results				

Incindence angle effect

- Rotation of the prototype in front of a beam.
- Geometrical effect Number of hits in hadronic shower varies as 1/ cos(θ), θ=incidence angle.

Correcting N_1 , N_2 , N_3 with $cos(\theta)$ factor recovers energy reconstruction.

CALICE SDHCAL

Recent developments of the SDHCAL prototype

E[GeV]

10 20

イロト イヨト イヨト イヨ

September 8th 2021 11 / 19

= nac

80

E[GeV]

G. Grenier (IP2I)

0.04

0.02

-0.02 -0.04 -0.06 -0.08 -0.1

	The SDHCAL 00000	Test beam results ○○○○●	
New results			

GRPC uniformity

- Efficiency and multiplicity vary. Can be measured per layer, per ASIC, per pad, depending on statistics.
- SDHCAL : Equalize response by adjusting ASIC thresholds or gains.

G. Grenier (IP2I)

Recent developments of the SDHCAL prototype

	The SDHCAL	New R&D	
		••••	
Completing II D design			

SDHCAL developments for ILD

- Mechanical structure to be similar to the final one
- Electronic readout should be the most robust with minimal intervention during operation.
- DAQ system should be robust and efficient
- Envisage new features such timing, etc..

Build new prototype with few but large GRPC with the new components.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

	The SDHCAL	New R&D	
		00000	
Completing ILD design			

Larger GRPC

Scalable gas distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mechanical structure

Industrial production of flat large absorber plates (3 m X 1 m) by roller leveling process + Electron Beam Welding \implies aplanarity less than 1mm.

	The SDHCAL	New R&D	
		000000	
Completing ILD design			

New electronics

ELE DOG

イロト イヨト イヨト イヨト

ASU

	The SDHCAL	New R&D	
		000000	
Completing ILD design			

New electronics

New electronics: ASIC

HARDROCR3 main features:

- Independent channels
- Zero suppress
- Extended dynamic range (up to 50 pC)
- I2C link with triple voting for slow control parameters
- packaging in QFP208, die size ~30 mm²
- Consumption increase (internal PLL, I2C)

DIF architecture

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors (vs 8.6 W in previous DIF)
- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0

HR3 dynamic range 15 fC to 50 pC

< ロ > < 同 > < 回 > < 回 >

EL OQO

	The SDHCAL	New R&D	
		000000	
Beyond ILD			

Active cooling

For circular collider (CEPC), continuous running, active cooling necessary.

Cooling plates

water pipes imbedded in metal plates. Cooling ability $\sim kW/m^2$.

measurement with resistance to simulate ASIC heat.

ELE DOG

▲圖▶ ▲ 国▶ ▲ 国▶

	The SDHCAL 00000	New R&D ○○○○○●	
Beyond ILD			

Time measurement

precise timing in HCAL

- Clean delayed neutron signal.
- Help separate close by showers.

New electronic

PETIROC ASIC

- 32-channels, < 3 mW/ch,</p>
- high bandwidth preamp (GBWP> 10 GHz),
- dual time and charge measurement (Q>50 fC) jitter < 20 ps rms at Q>0.3 pC

Multigap GRPC

New ASU, DIF designed

(비로) 소문에 소문에 소망하는 수비에

The SDHCAL 00000		Conclusion

Concluding remarks

- The SDHCAL technological prototype is a high granularity sampling hadronic calorimeter designed for PFA studies.
- Good energy resolution has been achieved and can be improved using various techniques (uniformisation, use tracks in calorimeter, angular corrections, MVA techniques, ...)
- R&D continues on
 - Design of a length-scalable active unit. Expecting to test in beam next year.
 - Design active cooling for circular collider.
 - Add timing with resolution below 100 ps for 4D (almost 5D) calorimetry.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Backup

נס סיים מינם מונים מיים מיים מ 0000000000000 ,`o o o o o <u>d</u>o o o o o o 5°0 0°0 0°0 5°0 0°0 0°0 070 070 0**1**0 070 070 0 තිබ තබ තබෝතිබො තබා තබා ם מים מים מלום מים מים מ 000000000000000 5 0 0 0 0 0 0 0 <u>5</u> 0 0 0 0 0 0 තිබ තබ තබ් තිබ තබ තබ

PCB interconnect

Readout ASIC (Hardroc2, 1.4mm)

Mylar laver (50µ)

PCB (1.2mm)

PCB support (FR4 or polycarbonate)

Readout pads

(1cm x 1cm)

<ロ> <四> <回> <三> <三> <三> <三> <三</p>