

Forward silicon vertex/tracking detector design and R&D for the future Electron-Ion Collider

Xuan Li (xuanli@lanl.gov)

on behalf of the

Los Alamos National Laboratory EIC team

This work is supported by LANL LDRD 20200022DR project!

PANIC Lisbon Portugal Particles and Nuclei International Conference

Outline

- Introduction to the Electron-Ion Collider (EIC).
- The proposed Forward Silicon Tracker (FST) design and simulation studies.
- Detector R&D setup and results.
- Summary and Outlook.

Introduction to the Electron-Ion Collider (EIC)

- The proposed Electron-Ion Collider (EIC) CD0/1 has been announced and the site is selected to be BNL.
- e-p collisions at the EIC:
 - (Polarized) p, d/³He beams at 41-275
 GeV.
 - -(Polarized) e beam at 5-18 GeV.
 - Instant luminosity $L_{int} \sim 10^{33-34} \text{ cm}^{-2} \text{sec}^{-1}$. A factor of ~1000 higher than HERA.
 - -Bunch crossing rate: 1-10 ns.
- e-A collisions at the EIC:
 - Multiple nuclear species (A=2-208) and variable center of mass energies.
 - -Instant luminosity $L_{int} \simeq 10^{33-34} \text{ cm}^{-2} \text{sec}^{-1}$.
 - -Bunch crossing rate: 1-10 ns.

High Precision Detector is Required at the EIC

 The future EIC will utilize high luminosity high energy electron and proton (nucleus) collisions to solve several fundamental questions in the nuclear physics field.

Charged particle η in e+p collisions

Charged particle p_{τ} in e+p collisions

 A silicon vertex/tracking detector with low material budgets and fine spatial resolution is needed.
 Fast timing (1-10ns readout) capability allows the separation of different collisions and suppress the beam backgrounds.

The Proposed Forward Silicon Tracker Design

• The current Forward Silicon Tracker (FST) design consists of 5 disks with the pseudorapidity coverage from 1.2 to 3.5.

LANL FST implemented in GEANT4

- Detector geometry fully implemented in GEANT4 (Fun4All framework).
- Initial tracking performance evaluated. arXiv: 2009.02888
- Recent updates with estimated support structure and cooling.

New Physics Observables Enabled by the Silicon Vertex/Tracking Detector

 Simulation studies of heavy flavor hadron/jet reconstruction with the proposed silicon vertex/tracking detector in 63.2 GeV electron+proton collisions.

 Clear heavy flavor hadron/jet signals can be achieved in the forward pseudorapidity region, which helps exploring the nucleon/nuclei structure and the hadronization process in the poorly constrained kinematic region.

The Proposed Forward Silicon Tracker Technology Candidates

- Technology candidates:
 - ~10 μ m pixel pitch Monolithic Active Pixel Sensor (MAPS) technology, e.g., ITS-3.
 - DMAPS technology: e.g., 36.4 μ m pixel pitch MALTA.
 - Low Gain Avalanche Diode (LGAD), e.g., AC-LGAD.

Name	Technique	Pixel Size	Integrati on Time	Thickness per layer	Monolithic Active Pixel Sensor (MAPS) sensor	DMAPS (MALTA) sensor
Monolithic Active Pixel Sensor (MAPS)	180 nm (future 65 nm) Tower Jazz	~ 10 X 10 μm ²	~ 2 µs	< 0.3%X ₀ per layer	Annota ALPIDE 3 CARRIER V3 Annota CARRIER V3 Ann	
Radiation hard MAPS (MALTA)	180 nm Tower Jazz	36.4 Χ 36.4 μm ²	< 5 ns	< 0.5%X ₀ per layer		
AC-LGAD	Low Gain Avalanche Diode	500 Χ 500 μm ²	< 100 ps	< 1%X ₀ per layer		LGAD/AC- LGAD sensor

LGAD Test Bench Configuration

 LGAD bench testing starts with a single LGAD sensor with a ⁹⁰Sr source. Then a two-layer LGAD (AC-LGAD) telescope is setup.

LGAD Sensor Data Processing Flow

• Data flow chart:

LGAD sensor

CAEN 1730s digitizer

DAQ computer

Extracted average pulse

Raw analog signal

Accumulated pulse distribution

Pulse width: ~500ps, Pulse amplitude: ~-100mV

LGAD Single Sensor ⁹⁰Sr Source Tests

• The LGAD sensor has the capability to tune the charge collection gain by varying the bias voltage.

Consistent gain curves!

• Different types of LGAD sensors have different sensitivities to the bias voltage variation.

Analyzed results from the LANL bench test

LGAD Two-layer Telescope ⁹⁰Sr Source Tests

- Use two HBK-1.2 LGAD sensors to build a 2-layer telescope.
- Use self trigger and the external trigger from a scintillator placed underneath the bottom LGAD sensor.

 2 orders of magnitude higher electron yields measured in the top sensor than in the bottom sensor as most electrons are absorbed in the top sensor.

LGAD Two-layer Telescope ⁹⁰Sr Source Tests

- Use two HBK-1.2 LGAD sensors to build a 2-layer telescope.
- Use self trigger and the external trigger from a scintillator placed underneath the bottom LGAD sensor.

Event display of the ⁹⁰Sr telescope tests

- Found hits from both layers belong to the same electron track.
- Track fit is under development.
- Will use AC-LGAD sensors to verify the fine spatial resolution.

MALTA Sensor Test Setup

• Single sensor bench test has been setup at LANL.

Example of analog scan of part of the MALTA sensor

- Threshold/noise scan tests are underway.
- Will setup the source (cosmic ray) tests for the hit/tracking performance evaluation.

Next Steps

- LGAD test:
 - Expand the telescope studies to AC-LGAD.
 - Will carry out the irradiation tests using the LANL LANSCE facility.
 - Plan to use a GHz laser scan system to test the timing resolution.
- MALTA test:
 - We will setup a MALTA telescope and carry out the ⁹⁰Sr source and cosmic ray tests.
- Detector conceptual design:
 - Will optimize the detector conceptual design and implement the service parts based on the R&D results.

3-layer silicon sensor telescope mechanical structure design

Engineer drawing of the FST conceptual design

Summary and Outlook

- The future EIC requires advanced silicon detectors to realize high precision particle tracking and identification measurements.
- The initial design of the proposed forward silicon vertex/tracking detector meets the EIC heavy flavor physics requirements.
- R&D work for the silicon detector candidates: LGAD and MALTA has achieved bench test results at LANL.
- We look forward to collaborate with more institutions toward the detector developments and construction for the EIC.

	NAS	EIC	EIC	EIC	EIC	EIC	EIC	
	review	CD0	CD1	CD2	CD3	CD-4a	CD-4	
-							\rightarrow	
	2018	2020	2021	2023 2	024	2030	2033	

Backup

Tracking Performance w/ Babar Magnet

 Tracking momentum resolution (left) and track transverse DCA (DCA_{2D}) resolution in different pseudorapidity regions.

 DCA_{2D} resolution VS $p_{_{T}}$

Tracking Performance w/ Beast Magnet

 Tracking momentum resolution (left) and track transverse DCA (DCA_{2D}) resolution in different pseudorapidity regions.

 DCA_{2D} resolution VS $p_{_{T}}$

Integrated ECCE Detector implemented in Fun4All

- July concept ECCE tracking detector consists of
 - MAPS based silicon vertex/tracking layers/planes.
 - MPGD/ μ Rwell gas tracker.
 - LGAD based outer layers.

ECCE Detector Tracking Performance: Momentum resolution

• The tracking momentum resolution of the current ECCE design is not far from the EIC Yellow Report requirements.

ECCE Detector Tracking Performance: DCA_{2D} resolution

• The tracking DCA_{2D} resolution of the current ECCE design meets the EIC Yellow Report requirements.

