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Outline

• Introduction to the Electron-Ion Collider (EIC).
• The proposed Forward Silicon Tracker (FST) design and 

simulation studies.
• Detector R&D setup and results.
• Summary and Outlook.
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Introduction to the Electron-Ion Collider (EIC)
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• e-p collisions at the EIC:
– (Polarized) p, d/3He beams at 41-275 

GeV.
– (Polarized) e beam at 5-18 GeV.
– Instant luminosity Lint ~ 1033-34 cm-2sec-1. 

A factor of ~1000 higher than HERA.
–Bunch crossing rate: 1-10 ns.

• e-A collisions at the EIC:
–Multiple nuclear species (A=2-208) and 

variable center of mass energies.
– Instant luminosity Lint ~ 1033-34 cm-2sec-1.
–Bunch crossing rate: 1-10 ns.

• The proposed Electron-Ion Collider (EIC) 
CD0/1 has been announced and the site is 
selected to be BNL. 

d ~1.2km



High Precision Detector is Required at the EIC
• The future EIC will utilize high 

luminosity high energy electron and 
proton (nucleus) collisions to solve 
several fundamental questions in 
the nuclear physics field.
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• The EIC detector is required to 
have large granularity in tracking, 
especially in the forward region. 
• A silicon vertex/tracking detector 

with low material budgets and 
fine spatial resolution is needed. 
Fast timing (1-10ns readout) 
capability allows the separation of 
different collisions and suppress 
the beam backgrounds.1< 0 1 2 3
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The Proposed Forward Silicon Tracker Design
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• The current Forward Silicon Tracker (FST) design consists of 5 
disks with the pseudorapidity coverage from 1.2 to 3.5.

• Detector geometry fully 
implemented in GEANT4 (Fun4All 
framework).

• Initial tracking performance 
evaluated. arXiv: 2009.02888

• Recent updates with estimated 
support structure and cooling.

LANL FST implemented in GEANT4

Support and coolingSilicon wedge and 
readout
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New Physics Observables Enabled by the Silicon 
Vertex/Tracking Detector

• Simulation studies of heavy flavor hadron/jet reconstruction 
with the proposed silicon vertex/tracking detector in 63.2 
GeV electron+proton collisions .
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• Clear heavy flavor hadron/jet signals can be achieved in the 
forward pseudorapidity region, which helps exploring the 
nucleon/nuclei structure and the hadronization process in 
the poorly constrained kinematic region.

w/ Beast magnet
3T B field



The Proposed Forward Silicon Tracker Technology Candidates
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• Technology candidates:
• ~10 𝜇m pixel pitch Monolithic Active Pixel Sensor (MAPS) 

technology, e.g., ITS-3.
• DMAPS technology: e.g., 36.4 𝜇m pixel pitch MALTA.
• Low Gain Avalanche Diode (LGAD), e.g., AC-LGAD.

Name Technique Pixel Size Integrati
on Time

Thickness 
per layer

Monolithic 
Active Pixel 

Sensor 
(MAPS)

180 nm 
(future 65 
nm) Tower 

Jazz

~ 10 X 10 
𝝁𝒎𝟐 ~ 2 𝝁s < 0.3%X0

per layer

Radiation 
hard MAPS 

(MALTA)

180 nm 
Tower Jazz

36.4 X 
36.4 
𝝁𝒎𝟐

< 5 ns < 0.5%X0
per layer

AC-LGAD
Low Gain 
Avalanche 

Diode

500 X 
500 𝝁𝒎𝟐 < 100 ps < 1%X0 per 

layer

3cm
1.5cm

Monolithic Active 
Pixel Sensor 

(MAPS) sensor

LGAD/AC-
LGAD sensor

DMAPS 
(MALTA) sensor



LGAD Test Bench Configuration

• LGAD bench testing starts with a single LGAD sensor with a 
90Sr source. Then a two-layer LGAD (AC-LGAD) telescope is 
setup. 

Xuan Li (LANL) 8
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trigger
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LGAD Sensor Data Processing Flow

• Data flow chart:
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LGAD sensor CAEN 1730s digitizer DAQ computer

Raw analog signal Accumulated pulse distribution Extracted average pulse 
shape and charge

1 time tick: 2ns

Pulse width: ~500ps, Pulse amplitude: ~-100mV



LGAD Single Sensor 90Sr Source Tests
• The LGAD sensor has the capability to tune the charge 

collection gain by varying the bias voltage.
• Different types of LGAD sensors have different sensitivities 

to the bias voltage variation.
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LGAD sensor performance
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LGAD Two-layer Telescope 90Sr Source Tests

• Use two HBK-1.2 LGAD sensors to build a 2-layer telescope.
• Use self trigger and the external trigger from a scintillator 

placed underneath the bottom LGAD sensor.

Xuan Li (LANL) 11

90Sr source

e-

90Sr source

LGAD sensor 1

LGAD sensor 2

Scintillator 
triggere-e-

ADC distribution for sensor 1 ADC distribution for sensor 2

• 2 orders of magnitude higher 
electron yields measured in the top 
sensor than in the bottom sensor as 
most electrons are absorbed in the 
top sensor.



LGAD Two-layer Telescope 90Sr Source Tests
• Use two HBK-1.2 LGAD sensors to build a 2-layer telescope.
• Use self trigger and the external trigger from a scintillator 

placed underneath the bottom LGAD sensor.
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Event display of the 90Sr telescope tests

• Found hits from both layers belong 
to the same electron track.
• Track fit is under development.
• Will use AC-LGAD sensors to verify 

the fine spatial resolution.



MALTA Sensor Test Setup
• Single sensor bench test has been setup at LANL.
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• Threshold/noise scan tests 
are underway.
• Will setup the source (cosmic 

ray) tests for the hit/tracking 
performance evaluation.



Next Steps
• LGAD test:

• Expand the telescope studies to 
AC-LGAD.

• Will carry out the irradiation 
tests using the LANL LANSCE 
facility.

• Plan to use a GHz laser scan 
system to test the timing 
resolution.

• MALTA test:
• We will setup a MALTA 

telescope and carry out the 90Sr 
source and cosmic ray tests.

• Detector conceptual design:
• Will optimize the detector 

conceptual design and 
implement the service parts 
based on the R&D results.

Xuan Li (LANL) 14

Engineer drawing of the FST 
conceptual design

3-layer silicon sensor telescope 
mechanical structure design



Summary and Outlook

• The future ElC requires advanced silicon detectors to realize 
high precision particle tracking and identification 
measurements.
• The initial design of the proposed forward silicon 

vertex/tracking detector meets the EIC heavy flavor physics 
requirements.
• R&D work for the silicon detector candidates: LGAD and 

MALTA has achieved bench test results at LANL. 
• We look forward to collaborate with more institutions 

toward the detector developments and construction for the 
EIC.
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Backup
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Tracking Performance w/ Babar Magnet

• Tracking momentum 
resolution (left) and track 
transverse DCA (DCA2D) 
resolution in different 
pseudorapidity regions.
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Tracking Performance w/ Beast Magnet

• Tracking momentum 
resolution (left) and track 
transverse DCA (DCA2D) 
resolution in different 
pseudorapidity regions.
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Integrated ECCE Detector implemented in Fun4All
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Silicon vertex/tracking detector

MPGD/ 𝝁Rwell
tracker

LGAD ToF (outer 
tracker)

• July concept ECCE tracking detector consists of 
• MAPS based silicon vertex/tracking layers/planes.
• MPGD/𝜇Rwell gas tracker.
• LGAD based outer layers.



ECCE Detector Tracking Performance: Momentum resolution

• The tracking momentum resolution of the current ECCE 
design is not far from the EIC Yellow Report requirements.
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ECCE Detector Tracking Performance: DCA2D resolution
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• The tracking DCA2D resolution of the current ECCE 
design meets the EIC Yellow Report requirements.


