

Andrea Vioque-Rodríguez<sup>1</sup>, Angel Gómez Nicola<sup>1</sup> and Domenec Espriu<sup>2</sup>

<sup>1</sup>Departamento de Física Teórica and IPARCOS. Univ. Complutense. <sup>2</sup>Departament of Quantum Physics and Astrophysics and Institut de Ciéncies del Cosmos (ICCUB), Universitat de Barcelona.



## Abstract

We analize the most general low-energy effective lagrangian including local parity violating terms parametrized by an axial chemical potential  $\mu_5$ . This result is obtained following the external source method, up to  $\mathcal{O}(p^4)$  order in the chiral expansion for two light flavours. We show that the  $\mathcal{O}(p^4)$  lagrangian includes new terms proportional to  $\mu_5^2$  and new low-energy constants. Finally, the  $\mu_5$  and temperature dependences of several observables related to the vacuum energy density are studied.

#### Chiral imbalance

**IPARCOS** 

A convenient way to parametrize a P-breaking source or chiral imbalance is by means of a constant axial chemical potential  $\mu_5$  to be added to the QCD action over a given finite space-time region.

The chiral charge may remain approximately conserved during the fireball evolution in a typical heavy-ion collision, giving rise in the light quark sector to a chemical potential term.

So we consider an axial source  $a_{\mu}^{0} = \mu_{5}\delta_{\mu0}$  in the QCD generating functional  $Z_{QCD}(v, a, s, p, \theta)$ . It is possible to perform a  $U_1(A)$  rotation on the quark fields which allows to trade a and  $\theta$ terms:

$$Z_{QCD}[0,0,\mathcal{M},0,\theta(x)] = Z_{QCD}\left[0,\frac{1}{2N_f}\partial_{\mu}\theta(x)\mathbb{1},\mathcal{M}\cos\left(\theta(x)/N_f\right),\mathcal{M}\sin\left(\theta(x)/N_f\right),0\right].$$
 (1)

The vacuum energy density

At  $\mathcal{O}(p^2)$ , it only contributes the constant part of the  $\mathcal{L}_2$  lagrangian. The  $\mathcal{O}(p^4)$  and  $\mathcal{O}(p^6)$  include:

# Construction of the effective lagrangian

We consider the effective low-energy representation of  $Z(v, a, s, p, \theta)$  in the case v = p = 0,

 $s = \mathcal{M}$  and the axial source given. The construction of the most general, model-independent, effective lagrangian can be carried out within the framework of the external source method.

To construct the lagrangian, the so called "spurion" fields  $Q_{R,L}(x)$  are introduced:

$$\mathcal{L}_Q = A_\mu \bar{q} \gamma^\mu \left[ Q_L(x) P_L + Q_R(x) P_R \right] q,$$
 (2)

where in our case  $Q_L = -Q_R = \mu_5/F$  and  $A_\mu = F\delta_{\mu 0}$ . There are additional terms in the effective lagrangian depending on  $Q_{R,L}$ .

The operator  $tr(U^{\dagger}d_{\mu}U)$  has to be considered, unlike in standard ChPT where that operator vanishes.

# The leading order $\mathcal{O}(p^2)$ lagrangian

At  $\mathcal{O}(p)$ , the only nontrivial operator is  $tr(Q_R + Q_L)$ .

To  $\mathcal{O}(p^2)$  the following operators are also allowed:

 $\operatorname{tr}\left(Q_{R}UQ_{L}U^{\dagger}
ight), \quad \operatorname{tr}\left(U^{\dagger}d^{\mu}U
ight)\operatorname{tr}\left(U^{\dagger}d^{\mu}U
ight),$ 

# $\operatorname{tr}\left(Q_{I}^{2}+Q_{R}^{2} ight), \quad \operatorname{tr}\left(Q_{I}^{2} ight)+\operatorname{tr}\left(Q_{R}^{2} ight), \quad \operatorname{tr}\left(Q_{R} ight)\operatorname{tr}\left(Q_{L} ight).$

Therefore, at this order, the only modification to the chiral lagrangian is a constant term:  $\mathcal{L}_2 = rac{F^2}{4} \mathrm{tr} \left[ \partial_\mu U^\dagger \partial^\mu U + 2B_0 \mathcal{M} \left( U + U^\dagger 
ight) 
ight] + 2\mu_5^2 F^2 \left( 1 - Z + \kappa_0 
ight).$ (3)

# Next to leading order $\mathcal{O}(p^4)$ lagrangian

At this order we have new terms constructed out of the Q operators and tr $(U^{\dagger}d_{\mu}U)$ . The possible contributions (including Q operators) are of the form:  $ddQQ, \chi QQ, QQQQ$ .



#### Quark condensate and scalar susceptibility

The first  $\mu_5$  correction to the quark condensate is temperature independent:

$$\langle \bar{q}q \rangle_I^{\text{LO}} = -2B_0 F^2, \quad \langle \bar{q}q \rangle_I^{\text{NLO}}(T,\mu_5) = \langle \bar{q}q \rangle_I^{\text{NLO}}(T,0) + 4\kappa_3 \frac{\mu_5^2}{F^2} \langle \bar{q}q \rangle_I^{\text{LO}}.$$
 (9)

The coefficient that regulates the dependence of  $\chi_S$  with  $\mu_5$  near the chiral limit is  $\kappa_1 - \kappa_3$ . For the ratio  $\langle \bar{q}q \rangle_{I}^{\text{NNLO}}(T,\mu_5)/\langle \bar{q}q \rangle_{I}^{\text{NNLO}}(0,\mu_5)$  the  $\kappa_i$  dependence reduces to the

combinations  $\kappa_a$  and  $\kappa_b$  (although in the chiral limit it depends only on  $\kappa_a$ ):

 $\kappa_a = 2\kappa_1 - \kappa_2, \quad \kappa_b = \kappa_1 + \kappa_2 - \kappa_3.$ 

## $T_c(\mu_5)$

(4)



The ChPT curve for the physical pion mass lies very close to the chiral limit one and the lattice points (Braguta et al) clearly fall into the uncertainty given by the natural values range of  $\kappa_a$  and  $\kappa_b$ . We compared a fit with two and three points in the chiral limit with a fit in the massive case fixing the  $\kappa_a$ parameter. That show that the chiral limit approach with just one parameter  $\kappa_a$  is a robust approximation.

 $rac{\chi_{ ext{top}}\left(\mu_{5}
ight)}{\chi_{ ext{top}}\left(0
ight)}$ 

FIT 2

Astrakhansev et al m $_{\pi}$ =410 MeV

Astrakhansev et al  $m_{\pi}$ =580 MeV

The form of the explicit  $\mu_5$  corrections are:

$$\mathcal{L}_4(\mu_5) = \mathcal{L}_4^0(\mu_5 = 0) + \kappa_1 \mu_5^2 \mathrm{tr} \left( \partial_\mu U^{\dagger} \partial^\mu U \right) + \kappa_2 \mu_5^2 \mathrm{tr} \left( \partial_0 U^{\dagger} \partial^0 U \right) + \kappa_3 \mu_5^2 \mathrm{tr} \left( \chi^{\dagger} U + \chi U^{\dagger} \right) + \kappa_4 \mu_5^2.$$

0.95

### Pion dispersion relation

The spatial and time components of the pion decay constant are different:

$$(F_{\pi}^{t})^{2}(\mu_{5}) = F_{\pi}^{2}(0) + 4(\kappa_{1} + \kappa_{2})\mu_{5}^{2}$$
(5)  
$$(F_{\pi}^{s})^{2}(\mu_{5}) = F_{\pi}^{2}(0) + 4\kappa_{1}\mu_{5}^{2}$$
(6)

The two main physical consequences of that are the pion velocity and pion mass:

$$\begin{aligned} \mathbf{v}_{\pi}(\mu_{5}) &= 1 + 2\kappa_{2}\frac{\mu_{5}^{2}}{F^{2}} & (7) \\ \left[M_{\pi}^{2}\right]^{\text{pole}}(\mu_{5}) &= M_{\pi}^{2}(0) - 4\left(\kappa_{1} + \kappa_{2} - \kappa_{3}\right)\frac{\mu_{5}^{2}}{F^{2}}M^{2} \\ & (8) \end{aligned}$$
Constrain for  $\kappa_{2}$ :  $\mathbf{v}_{\pi}(\mu_{5}) < 1 \rightarrow \kappa_{2} < 0.$ 

 $v_{\pi}(\mu_5)$ 0.80 0.75 0.70  $\underline{M_{\pi}^{2}(\mu_{5})}$   $\underline{F_{\pi}^{2}(\mu_{5})}$  $\overline{M_{\pi}^{2}(0)}^{,}F_{\pi}^{2}(0)$ 



| FIT               | $\kappa_{a} 	imes 10^{3}$ | $\kappa_b 	imes 10^3$ | $\chi^2/{ m dof}$ | $R^2$ | # points $\mu_5 \neq 0$ |
|-------------------|---------------------------|-----------------------|-------------------|-------|-------------------------|
| Fit 1 ( $M = 0$ ) | $1.7\pm0.6$               |                       | 0.01              | 1.00  | 2                       |
| Fit 2 ( $M = 0$ ) | $2.3\pm0.4$               |                       | 1.41              | 0.99  | 3                       |
| Fit 3             | 2.3 (fixed)               | $0\pm 1$              | 1.36              | 0.99  | 3                       |

## The topological susceptibility

The dependence of  $\chi_{top}$  with low and moderate  $\mu_5$ is controlled by the  $\kappa_3$  constant:

 $\chi_{top}(\mu_5)/\chi_{top}(0) = 1 + 4\kappa_3\mu_5^2/F^2 + \mathcal{O}(1/F^4).$  (10)

The fit of that observable to the lattice data shows that the results for  $\kappa_3$  are compatible with zero and the error bands are much narrower than the natural values for this con

| ารt | ant.                 |       |                   | μ <sub>5</sub> (MeV)                                            |  |
|-----|----------------------|-------|-------------------|-----------------------------------------------------------------|--|
| Γ   | $\kappa_3	imes 10^3$ | $R^2$ | $\chi^2/{ m dof}$ | # points $\mu_5 \neq 0$                                         |  |
| 1   | $0.1\pm1.4$          | 0.99  | 1.20              | $2 (m_{\pi} = 410 \text{ MeV}) + 2 (m_{\pi} = 580 \text{ MeV})$ |  |
| 2   | $0.5\pm0.9$          | 0.99  | 1.13              | $3 (m_{\pi} = 410 \text{ MeV}) + 3 (m_{\pi} = 580 \text{ MeV})$ |  |

## The chiral charge density

We perform a fit of  $\rho_5(\mu_5)$ 

$$\rho_5(T=0,\mu_5)|_{M=0} = 4F^2\mu_5^2(1-Z+\kappa_0) + 4\kappa_4\mu_5^3 - 6\gamma_0\frac{\mu_5^2}{F^2} + \mathcal{O}(1/F^4)$$
(11)

The simple linear dependence setting  $\kappa_4 = \gamma_0 = 0$  fits very well the lowest  $\mu_5$  lattice points. The prediction for  $\kappa_0$  is consistent with the fit allowing the three parameters  $\kappa_0, \kappa_4, \gamma_0$  to be free. This analysis does not favor a  $\mu_5 \neq 0$  minimum for the free energy for moderate values of  $\mu_5$ .

### Pressure and speed of sound

The  $\mu_5$  corrections to the pressure are parametrized by  $\kappa_2$ and  $\kappa_b$  but in the chiral limit, which corresponds to the ultrarelativistic free pion gas, only the  $\kappa_2$  term survives.

The speed of sound  $(c_s)$  depends only on  $\kappa_b$  and when we include the  $\mu_5$  corrections,  $c_s^2$  remains below 1/3. The uncertainty band for  $\kappa_b$  actually narrows as T increases.



## References

- D. Espriu, A. Gómez Nicola and A. Vioque-Rodríguez, JHEP **06** (2020), 062 doi:10.1007/JHEP06(2020)062 [arXiv:2002.11696 [hep-ph]].
- V. V. Braguta, V. A. Goy, E. M. Ilgenfritz, A. Y. Kotov, A. V. Molochkov, M. Muller-Preussker and B. Petersson, JHEP 06 (2015), 094 doi:10.1007/JHEP06(2015)094 [arXiv:1503.06670 [hep-lat]].
- V. V. Braguta, E. M. Ilgenfritz, A. Y. Kotov, B. Petersson and S. A. Skinderev, Phys. Rev. D 93 (2016) no.3, 034509 doi:10.1103/PhysRevD.93.034509 [arXiv:1512.05873 [hep-lat]].
- N. Y. Astrakhantsev, V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev and A. A. Nikolaev, Eur. Phys. J. A 57 (2021) no.1, 15 doi:10.1140/epja/s10050-020-00326-2 [arXiv:1902.09325 [hep-lat]].

| FIT   | $\kappa_0$  | $\kappa_4	imes 10^3$ | $\gamma_0	imes 10^5$ | $R^2$ | $\#$ points $\mu_5  eq$ ( |
|-------|-------------|----------------------|----------------------|-------|---------------------------|
| Fit 1 | $3.2\pm0.1$ | 0 (fixed)            | 0 (fixed)            | 0.99  | 3                         |
| Fit 2 | $3.1\pm0.1$ | $7.1\pm3.6$          | $4.6\pm2.4$          | 0.99  | 4                         |

#### Conclusions

- We have analyzed the effective chiral lagrangian for nonzero chiral imbalance for two light flavours, through its dependence with the axial chemical potential  $\mu_5$ .
- 2 The pion dispersion relation is modified through a reduction in the pion velocity and the pion mass due to the Lorentz breaking effect.
- 3 We have calculated the  $\mu_5$  corrections to the vacuum energy density up to sixth order.
- **(**) In the chiral limit  $T_c$  turns out to behave quite according to lattice analysis.
- $\circ$   $\rho_5$  follows essentially a linear behaviour with  $\mu_5$ , consistently with lattice data.
- The lowest order corrections to  $\chi_{top}$  are of order  $\mu_5^2$  controlled by the  $\kappa_3$  constant.
- The pressure at the order considered depends on  $\kappa_2$  and  $\kappa_b$ .