Experimental tests of QCD scaling laws at large momentum transfer in exclusive light-meson photoproduction

Igor Strakovsky¹, Moskov Amaryan², William Briscoe¹, Michael Ryskin³

¹The George Washington University, Washington, DC 20052, USA ²Old Dominion University, Norfolk, Virginia 23529, USA ³Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia

Summary

- In the present work [1], we study the energy dependence of the 90⁰ light-meson photoproduction off the nucleon.
- We consider practically all available experimental data obtained by the **CLAS** Collaboration over more than the last two decades and compare the results with the quark counting rules (QCR) predictions.

- We emphasize that in the case of *photoproduction* the *QCR* prediction is not affected by the Sudakov FF.
- This fact allows a more direct interpretation of the observed results.

Introduction

- Binary reactions in QCD with large momentum transfer involve quark and gluon exchanges between colliding particles.
- QCR of Brodsky-Farrar [2] and Matveev-Muradyan-Tavkhelidze [3] have simple recipe to predict energy dependence of $d\sigma/dt(s)$ of two-body reactions $a + b \rightarrow c + d$ at large production or scattering angles when t/s is finite and is kept constant.
- Fixed angle (90⁰) for *production* or *scattering* behavior for exclusive processes is expected to be $d\sigma/dt(s) \propto s^{-(n-2)}$, where *n* is number of constituents:

$(n-2) = (n_a + n_b) + (n_c + n_d) - 2$ and $s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$.

The optimal condition is large s with large |t| & |u| is $\theta = 90^{\circ}$.

- **QCR** accounts for minimum numbers of elementary hard processes needed to provide large momentum transfer to hadron.
- At very large energies, this QCR is modified by so-called Sudakov FF [4].
- Of course, probability of new *gluon emission* is suppressed by *QCD* coupling constant **a**_s, but simultaneously it can be enhanced by large ln^2s .
- should fall down with *s* faster than *QCR* prediction [5].
- Theoretically was shown that due to *point-like* nature of *photon*, *Sudakov FF* is *absent* in case of large angle meson photoproduction [6].

Two decades of JLab6 *Era* has ended leaving in its wake plethora of cross photoproduction off nucleon.

- ϕ , $f_1(1285)$, and $K(892)^+$ cross sections are close to each other and lie significantly below other mesons plateau.
- It may indicate common mechanism of their production.

- For lower values of |t|, $d\sigma/dt$ of ω and ρ^0 photoproduction is order of magnitude higher than that of π^{0} .
- For higher values of |t|, ω , and ρ^0 photoproduction $d\sigma/dt$ is little bit higher.
- $d\sigma/dt(t)$ for light meson photoproduction off nucleon @ **90**⁰ is *minimal*.

• Vertex is *quark electric charged* \times wave function. Cross section is ~ $(vertex)^2$. $|\rho^0\rangle = |uu\rangle - |dd\rangle =>$ vertex($\gamma + \rho$) = 2/3 - (-1/3) = 1 $|\omega\rangle = |uu\rangle + |dd\rangle =>$ vertex($\gamma + \omega$) = 2/3 + (-1/3) = 1/3 Ratio is $(1/(1/3))^2 = 9$ Analogous calculation & accounting for *proton* wave function. Ratio is $(5/3)^2 = 2.8$

From $s = 11 \text{ GeV}^2$ to $s = 21 \text{ GeV}^2$, $ds/dt(90^0)$ drops down by factor of 10^4 .

Within JLab12 program, Hall C (π^0 will come), GlueX (η & ω are coming), & CLAS12 can extend measurements

References

γp→K(892)⁺Λ γp→K(892)⁺Σ⁰ —X—I (n - 2)

γp→f₁(1285)p

energy large angle scattering, there is no Sudakov FF in these processes[1].

Thanks to *point-like* nature of photon in high

Due to *vector* nature of $\omega \& \rho$ mesons in order to form spin part of corresponding wave function, we have to *violate s-channel helicity conservation*.

10

- Therefore, we have to expect additional suppression of 90⁰ high energy photoproduction.
- For case of *a* & *p* mesons:
 - * Without *s*-channel helicity non-conservation, expected $n_{y} = 1 \& (n-2) = 7$
 - * Accounting for *helicity non-conservation*, expected $n_{y} = 2 \& (n-2) = 8 \checkmark$
 - * Accounting for *helicity non-conservation*, expected $n_n = 3 \& (n 2) = 9$
- Thus, one can say that observed energy dependence of ω and ρ cross section behavior at larger s is consistent with QCR.

[1] M. Amaryan *et al.*, Phys. Rev. C **103**, 055203 (2021) [2] S.J. Brodsky and G.R. Farrar, Phys Rev Lett **31**, 1153 (1973) [3] V.A. Matveev, R.M. Muradian, and A.N. Tavkhelidze, Lett Nuovo Cim 7, 719 (1973) [4] Yu.L. Dokshitzer et al., Basics of Perturbative QCD, Edition Frontieres (Singapore, 1991) [5] J. Botts and G. F. Sterman, Phys Lett B **224**, 201 (1989) [6] G.R. Farrar, G.F. Sterman, and H. Zhang, Phys Rev Lett 62, 2229 (1989)

Acknowledgments

This work was partially funded by US Department of Energy, Office of Science, Office of Nuclear Physics, under Grants No. DE-SC0016583 and No. DE-FG02-96ER40960.

