

Transverse Single-Spin Asymmetries and Cross Section of Weak Bosons in p+p collisions at $\sqrt{s} = 510$ GeV

Oleg Eyser

Brookhaven National Laboratory for the STAR Collaboration

Particles and Nuclei International Conference

September 5-10, 2021

Supported by

O. Eyser / PANIC 2021

QCD, Universality, and the Proton Structure

- Transverse spin asymmetries are an ideal tool to study the multidimensional structure of the nucleon.
 - Spin-orbit correlations Sivers effect: correlation between proton spin and transverse momentum of partons
 - Non-universality exhibits the process dependence Attractive color force in SIDIS turns into repulsive force in p+p

Gamberg, Kang, Prokudin Phys. Rev. Lett. 110, 232301 (2013) with HERMES data

O. Eyser / PANIC 2021

Prospects for RHIC Run 2017

- Increased theoretical interest
- Significant uncertainty in sea-quark Sivers-TMD function
- Very different Q^2 range in SIDIS, Drell-Yan, and W-boson production
- TMD evolution not the same as DGLAP

from the STAR beam use request

Figure 4–1: (left) Prediction for Sivers asymmetry A_N for DY lepton pair production at $\sqrt{s}=500$ GeV, for the invariant mass $4\leq Q\leq 8$ GeV and transverse momenta $0 \leq q_T \leq 1$ GeV [19] before any TMD evolution is applied. (middle and right) A_N as a function of W^{\pm} boson rapidity at $\sqrt{s}=500$ GeV, both are before and after TMD evolution is applied.

- Transverse asymmetries need the full reconstruction of the W-boson kinematics
 - Predicted asymmetries as function of rapidity and transverse momentum
 - Measurement of azimuthal modulation
 - Proof of principle measurement: PRL 116 (2016) 132301

RHIC as a Polarized Proton Collider

 $\vec{p} + \vec{p} / \vec{p} + A$ $\sqrt{s_{NN}} = 200 - 510 \text{ GeV}$

O. Eyser / PANIC 2021

RHIC as a Polarized Proton Collider

Lepton Candidate

- Well established method (helicity asymmetry and cross section ratio measurements)
 - Includes Z^0 and τ decays
 - Data driven QCD normalized at low p_T -range
 - Missing EEMC estimated from cuts with / without EEMC
- Lepton candidate $p_T > 25 \text{ GeV}$

Recent STAR W-boson results: Phys. Rev. D 103 (2021) 012001 Phys. Rev. D 99 (2019) 051102

2017 data

- Luminosity leveled (ZDC rate 330 kHz)
- Barrel EMC high tower trigger
- StiCA track reconstruction
- Candidate track with matched EMC hit:
 - TPC hits (≥15) and fit fraction (>51%)
 - EMC $E_{2\times 2}/E_{4\times 4} > 0.96$
 - $E_{2\times 2}/E_{R=0.7} > 0.88$
 - $E_{T,away} < 10 \text{ GeV}$
 - $p_{T,bal} > 0.8 \, p_T$

W-Boson Reconstruction

$$p + p \rightarrow W^{\pm} \rightarrow e^{\pm} + v$$

- W-boson decay
 - $p_{T,W}$ is lost
 - Almost no azimuthal angle correlation
- Measure recoil from the collision (tracks and EMC)

 $p_{T,W} = p_{T,e} + p_{T,v} = p_{T,recoil}$ $p_{T,recoil} = \sum (p_{T,TPC} + E_{T,EMC})$

W-Boson Reconstruction

$$p + p \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$$

- W-boson decay
 - $p_{T,W}$ is lost
 - Almost no azimuthal angle correlation
- Measure recoil from the collision (tracks and EMC)

 $p_{T,W} = p_{T,e} + p_{T,v} = p_{T,recoil}$ $p_{T,recoil} = \sum (p_{T,TPC} + E_{T,EMC})$

- Limited barrel acceptance
 - Comparison with embedded simulation
 - Recoil p_T correction
 - $p_{z,\nu}$ is more problematic

$$M_W^2 = (E_e + E_v)^2 - (\vec{p}_e + \vec{p}_v)^2$$

$$A = M_W^2 + \vec{p}_{e,T} \cdot \vec{p}_v$$

$$p_{v,z} = \frac{A}{p_{e,T}^2} \left[p_{e,z} \pm p_e \cdot \sqrt{1 - \frac{p_{e,T}^2 \cdot p_{v,T}^2}{A^2}} \right]$$

$$R = 1 - \frac{p_{e,T}^2 \cdot p_{v,T}^2}{A^2}$$

Azimuthal Angle Smearing

• Transverse spin asymmetries are measured through azimuthal modulations:

 $d\sigma(\phi) = \sigma_0 [1 + PA_N \cos(\phi)]$

$$A_N = \frac{d\sigma(\phi) - d\sigma(\phi + \pi)}{d\sigma(\phi) + d\sigma(\phi + \pi)} \qquad \qquad A_N = \frac{1}{P} \frac{N_\phi - N_{\phi + \pi}}{N_\phi + N_{\phi + \pi}}$$

- Toy Monte Carlo study → determine asymmetry dilution
 - 100k MC samples based on input distribution from embedding (per η -bin)

$$D = A_{N,meas} / A_{N,input}$$

Transversal Helicity Function g_{1T}

- Transversal helicity can also be measured in W-production
- χ^2 of fit is improved
- Uncertainties in A_S are similar to A_N
- A_S consistent with 0
- Cross talk in A_N is very small
 - W⁻: $\Delta A_N / \sigma_{A_N} < 20\%$
 - Included in $\sigma_{syst}(A_N)$

$$\frac{d\sigma^{W}}{dyd^{2}\tilde{q}_{T}} = \sigma_{0}^{W} \left\{ F_{UU} + S_{AL}F_{LU} + S_{BL}F_{UL} + S_{AL}S_{BL}F_{LL} + S_{AL}S_{AL}S_{AL}F_{LL} + S_{AL}S_{AL}S_{AL}F_{LL} + S_{AL}S_{AL}S_{AL}$$

Results: $A_N(W^{\pm})$

- Comparison with new theory prediction, based on first global fit of world data
 - Updated for STAR kinematics from PRL 126 (2021) 112002
- New STAR data will have biggest impact on high-x region of quark Sivers function

New Results for Z^0

 $p + p \rightarrow Z^0 \rightarrow e^+ + e^-$

- Experimentally very clean
 - Two high- p_T electrons (e^+ , e^-) from same vertex
- Leading systematic uncertainty from energy resolution
- Comparison with PRL 126 (2021) 112002 (more details in arxiv:2103.03270)

Unpolarized TMDs

 $p + p \rightarrow Z^0 \rightarrow e^+ + e^-$

- Differential cross section of high interest for TMD-PDF fits
 - Pavia group, JHEP 07 (2020) 117

- 2017 data doubles the previous statistics
- Unfolded p_T spectrum
- Systematics from energy resolution and electron selection

Global luminosity uncertainty 8.5% not included in the plot

O. Eyser / PANIC 2021

Summary

- > New results of transverse single-spin asymmetries of W^{\pm}/Z^{0} -bosons
 - Much improved precision over PRL 116 (2016) 132301
 - Corrected for smeared recoil reconstruction
 - Expect big impact in Sivers function at high-*x* in next global TMD fit

- > Differential cross section of Z^0 -bosons
 - Now 700 pb^{-1} of integrated luminosity

Lepton Candidate Selection

- 2017 data
 - Luminosity leveled (ZDC rate 330 kHz)
 - Barrel EMC high tower trigger
 - StiCA track reconstruction
- Candidate track with matched EMC hit:
 - TPC hits (≥15) and fit fraction (>51%)
 - EMC $E_{2\times 2}/E_{4\times 4} > 0.96$
 - $E_{2\times 2}/E_{R=0.7} > 0.88$
 - $E_{T,away} < 10 \text{ GeV}$
 - $p_{T,bal} > 0.8 p_T$

Electron Pseudorapidity

Compare Jae Nam's analysis: W cross section ratio in run 17

Azimuthal Angle Reconstruction

• Transverse spin asymmetries are measured through azimuthal modulations:

 $d\sigma(\phi) = \sigma_0 [1 + PA_N \cos(\phi)]$

$$A_N = \frac{d\sigma(\phi) - d\sigma(\phi + \pi)}{d\sigma(\phi) + d\sigma(\phi + \pi)} \qquad A_N = \frac{1}{P} \frac{N_\phi - N_{\phi + \pi}}{N_\phi + N_{\phi + \pi}}$$

• Toy Monte Carlo study \rightarrow dilution factor D = $A_{N,meas}/A_{N,input}$

W-Bosons & Binning

Global Fit

- Original release: 2002.08384, Cammarota et al.
- Phys Rev. D102, 054002 (2020)
 2009.10710, Echevarria et al.
- PRL 126, 112002 (2021) 2012.05135, Bury et al.
- 2103.03270, Bury et al.

