

Searches for Chiral Magnetic Effect (CME) and Chiral Magnetic Wave (CMW) in Xe-Xe and Pb-Pb collisions with ALICE

Andrea Danu (for the ALICE Collaboration) ~ Institute of Space Science - RO ~

OUTLINE

- Motivation
- ALICE Detector
- Results
- Summary

- Investigate parity violation (P) in the strong interaction (fundamental property)
 - Allowed by theory but never observed (strong-CP problem)

- D. Kharzeev et al, PPNP 88, 1 (2016)
- D. Kharzeev et al., NPA 797, 67 (2007)
- D. Kharzeev et al., NPA803 227 (2008)
- K. Fukushima et al., PRD 78, 074033 (2008)
- S. Voloshin, PRC 70, 057901 (2004)

- Investigate parity violation (P) in the strong interaction (fundamental property)
 - Allowed by theory but never observed (strong-CP problem)
- Heavy-ion collisions: strong magnetic field (B~10¹⁵ T)

D. Kharzeev et al, PPNP 88, 1 (2016)
D. Kharzeev et al., NPA 797, 67 (2007)
D. Kharzeev et al., NPA803 227 (2008)
K. Fukushima et al., PRD 78, 074033 (2008)
S. Voloshin, PRC 70, 057901 (2004)
Gui-Rong Liang et al., arxiv 2004.04440

- Investigate parity violation (P) in the strong interaction (fundamental property)
 - Allowed by theory but never observed (strong-CP problem)
- Heavy-ion collisions: strong magnetic field (B~10¹⁵ T)
- Theory: QCD domains with P and CP symmetries locally broken

D. Kharzeev et al, PPNP 88, 1 (2016)
D. Kharzeev et al., NPA 797, 67 (2007)
D. Kharzeev et al., NPA803 227 (2008)
K. Fukushima et al., PRD 78, 074033 (2008)
S. Voloshin, PRC 70, 057901 (2004)
Gui-Rong Liang et al., arxiv 2004.04440

- Investigate parity violation (P) in the strong interaction (fundamental property)
 - Allowed by theory but never observed (strong-CP problem)
- Heavy-ion collisions: strong magnetic field (B~10¹⁵ T)
- Theory: QCD domains with P and CP symmetries locally broken

- D. Kharzeev et al, PPNP 88, 1 (2016)
 D. Kharzeev et al., NPA 797, 67 (2007)
 D. Kharzeev et al., NPA803 227 (2008)
 K. Fukushima et al., PRD 78, 074033 (2008)
 S. Voloshin, PRC 70, 057901 (2004)
 Gui-Rong Liang et al., arxiv 2004.04440
- Chiral Magnetic Effect (CME): interaction of quarks with the QCD domains and B
 - Experimental consequence: charge separation perpendicular to the reaction plane
 - Interpretation of the experimental results is complicated by background contributions

- Investigate parity violation (P) in the strong interaction (fundamental property)
 - Allowed by theory but never observed (strong-CP problem)
- Heavy-ion collisions: strong magnetic field (B~10¹⁵ T)
- Theory: QCD domains with P and CP symmetries locally broken

- D. Kharzeev et al, PPNP 88, 1 (2016)
 D. Kharzeev et al., NPA 797, 67 (2007)
 D. Kharzeev et al., NPA803 227 (2008)
 K. Fukushima et al., PRD 78, 074033 (2008)
 S. Voloshin, PRC 70, 057901 (2004)
 Gui-Rong Liang et al., arxiv 2004.04440
- Chiral Magnetic Effect (CME): interaction of quarks with the QCD domains and B
 - Experimental consequence: charge separation perpendicular to the reaction plane
 - Interpretation of the experimental results is complicated by background contributions
- Chiral Magnetic Wave (CMW): combination of CME and Chiral Separation Effect (CSE)
 - CSE refers to the separation of chiral charge along the axis of the magnetic field

Anisotropic flow

Pressure gradients (larger in the x direction) push bulk "out" \rightarrow "flow"

More, faster particles seen in the x-direction

Anisotropic flow

Pressure gradients (larger in the x direction) push bulk "out" \rightarrow "flow"

More, faster particles seen in the x-direction

$$E_{\frac{d^{3}N}{d^{3}p}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{n})))$$

- Anisotropic flow: initial spatial anisotropy → final momentum anisotropy via collective interactions
 - v_n quantify the event anisotropy

Anisotropic flow

- Anisotropic flow: initial spatial anisotropy \rightarrow final momentum anisotropy via collective interactions
 - v_n quantify the event anisotropy
- Characterize key QGP properties like viscosity
 - Nearly perfect fluid: $1/4\pi < \eta/s < 3/4\pi$

0.05

10

20

30

40

50

70

60 Centrality (%)

Observables for CME and CMW

charge separation

CME

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

- 2-particle correlator

 $\delta_{ab} = \langle \cos(\varphi_a - \varphi_b) \rangle \approx \langle a_{1,a} a_{1,b} \rangle + B_{\text{in-plane}} + B_{\text{out-plane}}$

- 3-particle correlator

$$\gamma_{ab} = \langle \cos(\varphi_a + \varphi_b - 2\Psi_2) \rangle \approx - \langle a_{1,a} a_{1,b} \rangle + B_{\text{in-plane}} - B_{\text{out-plane}}$$

- B_{in} and B_{out} denote background contributions projected onto Ψ_2 and perpendicular to it

Observables for CME and CMW

charge separation

Y. Burnier et al., PRL 107, 052303 (2011)

September 2021

• CME

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

- 2-particle correlator

 $\delta_{ab} = \langle \cos(\varphi_a - \varphi_b) \rangle \approx \langle a_{1,a} a_{1,b} \rangle + B_{\text{in-plane}} + B_{\text{out-plane}}$

- 3-particle correlator

 $\boldsymbol{\gamma}_{ab} = \langle \cos(\varphi_a + \varphi_b - 2\Psi_2) \rangle \approx - \langle a_{1,a}a_{1,b} \rangle + B_{\text{in-plane}} - B_{\text{out-plane}}$

- B_{in} and B_{out} denote background contributions projected onto Ψ_2 and perpendicular to it

• CMW

- Anisotropic flow difference vs charge asymmetry

$$\Delta v_{n} = v_{n}^{+} - v_{n}^{-} = r_{\Delta v_{n}}^{Norm} A_{\pm} \qquad A_{\pm} = \frac{N_{+} - N_{-}}{N_{+} + N}$$

• Normalized slope $r_{\Delta v_n}^{Norm}$

Andrea Danu – PANIC 2021

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, particle identification based on specific energy loss

September 2021

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, particle identification based on specific energy loss
- Time-of-Flight (TOF)
 - Particle identification based on the flight time

September 2021

Andrea Danu – PANIC 2021

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, particle identification based on specific energy loss
- Time-of-Flight (TOF)
 - $-\,$ Particle identification based on the flight time
- V0
 - Triggering, centrality and $\psi_{\scriptscriptstyle 2}$ determination

September 2021

Andrea Danu – PANIC 2021

Pb-Pb, 2015 run, Vs_{NN}=5.02 TeV negative particles TPC signal (arb. units), 000 000 006 006 006 006 ALICE performance 20.04.2018 10⁶ 10⁵ 10⁴ 10³ 400 300 10² 200 10 100 10 2×10 56 $\frac{p}{7}$ (GeV/c) ALT-PERF-15202

- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, particle identification based on specific energy loss
- Time-of-Flight (TOF)
 - Particle identification based on the flight time
- V0
 - Triggering, centrality and $\psi_{\scriptscriptstyle 2}$ determination
 - Track selection

 |η| < 0.8
 0.2 < p_T < 5 GeV/c
 - Pb-Pb at √s_{NN} = 5.02 TeV
 ~60M events
 - Xe-Xe at $\sqrt{s_{_{\rm NN}}}$ = 5.44 TeV - ~1M events

September 2021

CME in Xe-Xe and Pb-Pb collisions

2- and 3-particle correlators in Xe-Xe collisions: centrality dependence

• γ_{ab} : stronger correlation for opposite charge pairs compared to same charge \rightarrow charge separation

- y_{ab} : stronger correlation for opposite charge pairs compared to same charge \rightarrow charge separation
- γ_{ab} (opp-same): indication of charge separation

- y_{ab} : stronger correlation for opposite charge pairs compared to same charge \rightarrow charge
- γ_{ab} (opp-same): indication of charge separation
- δ_{ab} : stronger correlation for opposite charge pairs compared to same charge \rightarrow background dominates

Andrea Danu – PANIC 2021

3-particle correlator in Xe-Xe collisions: differential analysis

• $\gamma_{ab}(|\eta_a-\eta_b|)$: strong dependence for same charge pairs and weak for opposite charge pairs

- $\gamma_{ab}(|\eta_a-\eta_b|)$: strong dependence for same charge pairs and weak for opposite charge pairs
- $\gamma_{ab}(|p_{T,a}-p_{T,b}|)$: no dependence for same charge and strong dependence for opposite charge pairs

3-particle correlator in Xe-Xe collisions: differential analysis

- $y_{ab}(|\eta_a-\eta_b|)$: strong dependence for same charge pairs and weak for opposite charge pairs
- $y_{ab}(|p_{T,a}-p_{T,b}|)$: no dependence for same charge and strong dependence for opposite charge pairs
- $\gamma_{ab}((p_{T,a}+p_{T,b})/2)$: strong correlation for same charge pairs and weak for opposite charge pairs

Andrea Danu – PANIC 2021

3-particle correlator in Xe-Xe collisions: model comparison

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v_2 and p_T spectra of π , K, p
 - Describes fairly well the measured data points
 - Background dominates measurements
 - Not observed in Pb-Pb collisions

3-particle correlator in Xe-Xe collisions: model comparison

S. Shi et al., Annals Phys. 394, 50 (2018) Y. Jiang et al., CPC 42 (2018) 011001

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v_2 and p_T spectra of π , K, p
 - Describes fairly well the measured data points
 - Background dominates measurements
 - Not observed in Pb-Pb collisions
- Anomalous Viscous Fluid Dynamics (AVFD)
 - EbyE IC + E/M fields (field lifetime as input)
 - Tune the parameters in each centrality class to reproduce v_2 and multiplicity (arXiv: 2106.03537)
 - Good agreement with data points
 - Signal consistent with zero

3-particle correlator: Xe-Xe vs Pb-Pb measurements

• γ_{ab} in Xe-Xe collisions has similar values as in Pb-Pb collisions when divided by v_2 , except for peripheral collisions

3-particle correlator: Xe-Xe vs Pb-Pb measurements

- γ_{ab} in Xe-Xe collisions has similar values as in Pb-Pb collisions when divided by v_2 , except for peripheral collisions
- *γ*_{ab} (opp-same) in Xe-Xe collisions has similar values as in Pb-Pb collisions within uncertainties → background dominates

CMW in Pb-Pb collisions

h±

 π^{\pm}

Normalized slope for charged hadrons and pions: centrality dependence

Comparison with CMS and STAR results

Good agreement with CMS and STAR results

h±

π[±]

Andrea Danu – PANIC 2021

Summary

- First measurement of CME in Xe-Xe collisions
 - y_{ab} consistent with charge separation
 - y_{ab} (opp-same) similar values as in Pb-Pb collisions
 - · Large background contribution
 - Reproduced by background model (BW+LCC) and AVFD with signal values consistent with 0
- Measurements of normalized Δv_2 and Δv_3 slope of charged hadrons and pions in Pb-Pb collisions
 - $r_{\text{Norm}}_{\Delta v2}$ is compatible with $r_{\text{Norm}}_{\Delta v3}$
 - Good agreement with CMS and STAR results

Backup

Glauber +B configurations

- Perform Glauber simulations tuned to ALICE data
 - MC Glauber v3.2 from TGlauberMC
 - Pb-Pb: σ = 67.6 mb
 - Xe-Xe: σ = 68.4 mb, β_2 = 0.18, β_4 = 0
 - 1M events for each configuration
 - Centrality determination using simulated V0M multiplicity → NBD distributions (f*Npart + (1-f)*Ncoll)
 - NBD and f parameters from ALICE public notes
- B determination from proton spectators (arxiv:0711.0950)

$$eoldsymbol{B}^{\pm}_{s}(au,\eta,oldsymbol{x}_{\perp}) = \pm Zlpha_{EM}\sinh(Y_{0}\mp\eta)\int\mathrm{d}^{2}oldsymbol{x}_{\perp}'
ho_{\pm}(oldsymbol{x}_{\perp}')[1- heta_{\mp}(oldsymbol{x}_{\perp}')] \ imesrac{(oldsymbol{x}_{\perp}'-oldsymbol{x}_{\perp}) imesoldsymbol{e}_{z}}{[(oldsymbol{x}_{\perp}'-oldsymbol{x}_{\perp})^{2}+ au^{2}\sinh(Y_{0}\mp\eta)^{2}]^{3/2}},$$

- $\tau = 0.1 \text{ fm}$
- Y₀ = 8.672 (Xe-Xe) and 8.592 (Pb-Pb)
- x = y = 0 fm

Expected smaller CME contribution in Xe-Xe than in Pb-Pb collisions

ALI-SIMUL-327188

Andrea Danu – PANIC 2021

3-particle correlator in Xe-Xe collisions: model comparison

S. Shi et al., Annals Phys. 394, 50 (2018) Y. Jiang et al., CPC 42 (2018) 011001

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v_2 and $p_{\rm T}$ spectra of $\pi,\,K,\,p$
 - Each source generates *M* particles of opposite charge
 - M depends on centrality
 - Randomly oriented with the same boost
 - · Describes fairly well the measured data points
 - Background dominates measurements
 - Not observed in Pb-Pb collisions
- Anomalous Viscous Fluid Dynamics(AVFD)
 - EbyE IC + E/M fields (field lifetime as input)
 - Anomalous transport \rightarrow CME signal
 - VISH2+1 \rightarrow hydro evolution
 - Hadronisation + LCC
 - UrQMD
 - Tune the parameters in each centrality class to reproduce v₂ and multiplicity (https://arxiv.org/abs/2106.03537)
 - Good agreement with data points
 - Signal consistent with zero

Model calculation: BW+LCC

