Extraction of worm-gear TMD g_{1T} from HERMES, COMPASS & JLab data on SIDIS

Shohini Bhattacharya 8 September 2021

In Collaboration with:

Zhongbo Kang (UCLA) Andreas Metz (Temple U.) Gregory Penn (Yale U.) Daniel Pitonyak (Lebanon Valley College)

TMDs @ TWIST 2

Nucleon polarization		U	L	Т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^\perp
	Т	f_{1T}^\perp	g_{1T}	h_1, h_{1T}^\perp

<u>יז</u>נ'

TMDs @ TWIST 2

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Phenomenological predictions

1.

<u>ה</u>

5

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Phenomenological predictions

1. Large N_c analysis: (Pobylitsa, hep-ph/0301236)

2.

 $g_{1T}^u(x, \vec{k}_{\perp}^2) = - g_{1T}^d(x, \vec{k}_{\perp}^2) + 1/N_c$ -suppressed

<u>ו</u>ן

6

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Phenomenological predictions

1. Large N_c analysis: (Pobylitsa, hep-ph/0301236)

2.

Large- N_c $g_{1T}^u(x, \vec{k}_{\perp}^2) \approx \bigoplus g_{1T}^d(x, \vec{k}_{\perp}^2) + 1/N_c$ -suppressed

ית"

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

2. Wandzura-Wilczek-type (WW-type) relation: (Avakian et. al., 0709.3253, Kanazawa et. al., 1512.07233, ...)

$$g_{1T}^{(1)q}(x) \equiv \int d^2 \vec{k}_{\perp} \left(\frac{k_{\perp}^2}{2M^2}\right) g_{1T}^q(x, \vec{k}_{\perp}^2) \stackrel{\text{EOM}}{=} x \int_x^1 \frac{dy}{y} g_1^q(y) + x \, \tilde{g}_T^q(x)$$

T

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

2. Wandzura-Wilczek-type (WW-type) relation: (Avakian et. al., 0709.3253, Kanazawa et. al., 1512.07233, ...)

$$g_{1T}^{(1)q}(x) \equiv \int d^2 \vec{k}_{\perp} \left(\frac{k_{\perp}^2}{2M^2}\right) g_{1T}^q(x, \vec{k}_{\perp}^2) \overset{\text{WW}}{\approx} x \int_x^1 \frac{dy}{y} g_1^q(y) + x g_T^q(x)$$

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Fundamentals

Semi-inclusive Deep Inelastic Scattering: $\ell(l) + N(P,S) \rightarrow \ell'(l') + h(P_h) + X$

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Fundamentals Semi-inclusive Deep Inelastic Scattering: $\ell(l) + N(P,S) \rightarrow \ell'(l') + h(P_h) + X$ Model-independent decomposition of cross-section: (Bacchetta et. al. 2007, ...) $\frac{d\sigma}{dx\,dy\,d\phi_S\,dz_h\,d\phi_h\,dP_{hT}^2} = \frac{\alpha_{\rm em}^2}{x\,y\,Q^2} \left\{ \left(1 - y + \frac{1}{2}y^2\right) \boldsymbol{F_{UU}} \right\}$ $+\lambda_{l} \left| \vec{S}_{\perp} \right| y \left(1 - \frac{1}{2} y \right) \cos(\phi_{h} - \phi_{S}) \boldsymbol{F}_{LT}^{\cos(\phi_{h} - \phi_{S})} + \dots \right\}$

<u>"</u>

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Parameterization of g_{1T}

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Presently available data insufficient to pin down the parameters:

$$k_{\perp}^2 \rangle, \quad \alpha^d, \quad \beta^{u/d}$$

Gaussian ansatz:

where, $g_{1T}^{(1)}(x,Q^2) = \frac{n}{\int_0^1 dy \, y^{\alpha+1}(1-y)^\beta f_1(y,Q_0^2)} x^{\alpha}(1-x)^\beta f_1(x,Q^2)$

 $g_{1T}^{q}(x, \vec{k}_{\perp}^{2}, Q^{2}) = g_{1T}^{(1)q}(x, Q^{2}) \frac{2M_{N}^{2} e^{-\overline{\pi \langle k_{\perp}^{2} \rangle}}}{\pi (\langle k_{\perp}^{2} \rangle)^{2}} \qquad q = (u, d)$

<u>ו</u>ן

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

• Fix TMD width:

<u>ה</u>

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

<u>ת</u>י

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

<u>ת</u>

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

<u>ת</u>

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

<u>ה</u>

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Data						
Datacat	Target	Identified hadron	No. of points			
	larget		No. of points	_		
HERMES	p	π^+	26			
Airapetian et. al., arXiv: 2007.07755		π^-	26	<u>Cut</u> :		
		π^0	8	D		
COMPASS	p	$h^+ \approx (\pi^+, {\rm K}^+)$	33	$egin{array}{ccc} & rac{P_{hT}}{zQ} < 0.5 \end{array}$		
Parsamyan, PoS: QCDEV2017		$h^-\approx (\pi^-, {\rm K}^-)$	31			
JLab	³ He	π^+	2			
Huang, arXiv: 1108.0489		π^-	2			

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Fitting procedure: Monte-Carlo technique

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Fitting procedure: Monte-Carlo technique

Theory

<u>ת</u>י

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

<u>ת</u>י

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

T

<u>"</u>

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Theory versus data (Preliminary)

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Preliminary results for the x-dependence

<u>"</u>

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

<u>ו</u>

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

SB, Kang, Metz, Penn, Pitonyak, In preparation (2021)

Preliminary comparison with WW approximation

- Comparison with WW approx. from phenomenological fits from NNPDF (arXiv: 1406.5539) & JAM (arXiv: 1601.07782) (For DSSV, see backup)
- Qualitative agreement with WW approx.
- Hints of slight violation of WW approx. (indication of quark-gluonquark correlations)

<u>ו</u>ן

Extraction of g_{1T} TMD from HERMES, COMPASS & JLab data

<u>ו</u>ן

Extraction of *g*_{1*T*} **TMD from HERMES, COMPASS & JLab data**

Summary/ Outlook

Summary

- We have shown preliminary results for g_{1T} , obtained from a simultaneous fitting to HERMES, COMPASS & JLab data on SIDIS
- Qualitative agreements with large $N_{\mathbf{c}}$ & WW approximation
- Indication of slight violation of WW approximation

Outlook

- Include TMD evolution
- Extract anti-quark distributions, including strangeness
- Extend analysis to extract h_{1L}^{\perp} , ...

Backup slides

With DSSV (arXiv: 1902.10548)

Fitting without JLab dataset:

