Generalized parton distributions (GPDs) of sea quark in the proton from nonlocal chiral effective theory

In Collaboration with Chueng-Ryong Ji, Wally Melnitchouk, Anthony Thomas and Ping Wang (in preparation)

Fangcheng He (Institute of Theoretical Physics, Chinese Academy of Sciences)

PANIC 2021 Conference

8th September, 2021

□ Introduction to the unpolarized GPDs

Nonlocal chiral effective theory

Convolution formulas for GPDs of sea quark

Numerical results

Deeply virtual Compton scattering

Parameters in GPDs:

Skewness:
$$\xi = -\frac{\Delta \cdot n}{2P \cdot n} = -\frac{\Delta^+}{2P^+}$$

The square of transfer momentum: $t = \Delta^2 = (p' - p)^2$

Average quark momentum fraction: $x = \frac{k^+}{P^+}$

Unpolarized quark GPDs of nucleon

• Matrix element of the unpolarized quark GPDs in the proton:

$$\begin{split} V^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix(P \cdot z)} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \tilde{\eta} q(\frac{1}{2}z) \, |p\rangle \Big|_{z=\lambda n} \\ &= \frac{1}{2P \cdot n} \left[\frac{H^{q}(x,\xi,t) \, \bar{u}(p') \tilde{\eta} u(p) + E^{q}(x,\xi,t) \, \bar{u}(p') \frac{i\sigma^{\beta \alpha} \Delta_{\alpha} \tilde{n}_{\beta}}{2m} u(p) \right], \end{split}$$

• Parton distribution function($\xi = t = 0$):

$$H^{q}(x > 0,0,0) = q(x),$$
 $H^{q}(x < 0,0,0) = -\bar{q}(-x)$

• Dirac and Pauli form factors:

$$F_1^q(t) = \int_{-1}^1 dx \, H^q(x,\xi,t), \qquad \qquad F_2^q(t) = \int_{-1}^1 dx \, E^q(x,\xi,t)$$

Introduction to unpolarized GPDs

Nonlocal chiral effective theory

Convolution formulas for GPDs of sea quark

Numerical results

Nonlocal chiral lagrangian

F. He and P. Wang, PRD(97), 2018 F. He and P. Wang, PRD(98), 2018

• The local interaction between proton, Λ and Kaon:

$$\mathcal{L}_{K}^{local} = -\int dx \frac{D+3F}{\sqrt{12}f} \bar{p}(x)\gamma^{\mu}\gamma_{5} \Lambda(x)(\partial_{\mu} + ie_{s} \mathscr{A}_{\mu}^{s}(x))K^{+}(x),$$

• Corresponding nonlocal Lagrangian:

$$\mathcal{L}_{K}{}^{nl} = -\int dx \int dy \frac{D+F}{\sqrt{12}f} \bar{p}(x)\gamma^{\mu}\gamma_{5}\Lambda(x)(\partial_{\mu} + i e_{s}\mathscr{A}_{\mu}^{s}(x)) \Big(\exp[ie_{s}\int_{x}^{y} dz^{\nu} \mathscr{A}_{\nu}^{s}(z)] K^{+}(y)F(x-y)\Big),$$

• Nonlocal Lagrangian is invariant under the following gauge transformation:

$$K^+(y) \to e^{-i\alpha(y)}K^+(y), \quad \Lambda(x) \to e^{i\alpha(x)}\Lambda(x), \quad \mathscr{A}_\mu(x) \to \mathscr{A}_\mu(x) - \frac{1}{e}\partial_\mu\alpha(x),$$

Comparison of local and nonlocal cases

Expand the nonlocal Lagrangian

$$\begin{split} \mathcal{L}_{K}{}^{nl} &= -\int dx \int dy \frac{D+F}{\sqrt{12}f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x) (\partial_{\mu} + i e_{s} \mathscr{A}_{\mu}^{s}(x)) \Big(\exp[i e_{s} \int_{x}^{y} dz^{\nu} \, \mathscr{A}_{\nu}^{s}(z)] \, K^{+}(y) F(x-y) \Big), \\ &= -\int dx \int dy \frac{D+F}{\sqrt{12}f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x) \partial_{\mu,x} \Big(K^{+}(y) F(x-y) \Big) \\ &- \int dx \int dy \frac{D+F}{\sqrt{12}f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x) (i e_{s} \mathscr{A}_{\mu}^{s}(x)) \Big(K^{+}(y) F(x-y) \Big) \\ &- \int dx \int dy \frac{D+F}{\sqrt{12}f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x) \partial_{\mu,x} \Big(i e_{s} \int_{x}^{y} dz^{\nu} \, \mathscr{A}_{\nu}^{s}(z) \, K^{+}(y) F(x-y) \Big), \end{split}$$

Vertexes

P(p1)

A(q)

P(p1)

A(q) [

P(p1)

K(k)

 $\Lambda(p2)$

K(k)

 $\Lambda(p2)$

K(k)

 $\Lambda(p2)$

 $\frac{D+3F}{\sqrt{12}f}k_{\mu}\gamma^{\mu}\gamma^{5}$

Feynman rules in

local case

 $\frac{D+3F}{\sqrt{12}f}\gamma^{\mu}\gamma^{5}$

 $\frac{D+3F}{\sqrt{12}f}k_{\mu}\gamma^{\mu}\gamma^{5}F(k) \qquad F(k) = \frac{(\Lambda^{2}-M_{K}^{2})^{2}}{(\Lambda^{2}-k^{2})^{2}}$

F(k) is the Fourier transformation of F(x-y)

$$\frac{D+3F}{\sqrt{12}f}\gamma^{\mu}\gamma^{5}F(k)$$

Feynman rules in

nonlocal case

 $\frac{D+3F}{\sqrt{12}f}k_{\nu}\gamma^{\nu}\gamma^{5}\frac{[F(k+q)-F(k)](2k+q)^{\mu}}{2k \cdot q + q^{2}}$ (Additional vertex)

7/16

Nonexistence

Nucleon electromagnetic form factors

F. He and P. Wang, PRD(98), 2018

 Numerical results of nucleon electromagnetic form factors with nonlocal chiral effective theory $F(k) = \frac{(\Lambda^2 - M_K^2)^2}{(\Lambda^2 - k^2)^2}$ 1.0 $\Lambda = 1 GeV$ 0.8 Solid line: $1/(1 + Q^2/0.71^2)^2$ 0.6 Dashed line: G_P^E 0.4 **Dash-Dotted line:** G_P^M/μ_P 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 Q^2 (GeV²)

The best choice for Λ is about 1GeV !

Introduction to unpolarized GPDs

Nonlocal chiral effective theory

Convolution formulas for GPDs of sea quark

Numerical results

Convolution formula for GPDs

Matrix element for GPDs in quark level:

$$V_{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix(Pz)} < p' | O_{q} | p > |_{z=\lambda n}, \text{ where } O_{q} = \bar{q}(-\frac{1}{2}z)\gamma^{+}q(\frac{1}{2}z)$$
Match to the hadron level
$$V_{q} = \frac{1}{2} \sum_{H} \int_{0}^{1} dy \,\theta(0 \le \frac{x}{y} \le 1) \times (q_{H}^{v}(\frac{x}{y}, 0, t) \times \int \frac{dz^{-}}{2\pi} e^{iy(Pz)} < p' | O_{H} | p >$$
Input GPD Splitting function
Where O_{H} is twist-2 hadron operator, $q_{H}^{v}(\frac{x}{y}, 0, t)$ is quark valance GPD in hadron state H.

Sullivan process

1 Hadron operator for
$$\pi^+$$
: $O_{\pi^+} = \pi^-(\frac{z}{2})\partial^+\pi^+(-\frac{z}{2}) - \partial^+\pi^-(\frac{z}{2})\pi^+(-\frac{z}{2})$

(2) The hadron matrix element can be written as

$$V_{H} = \int \frac{dz^{-}}{2\pi} e^{iy(Pz)} < p' | O_{\pi^{+}} | p > = \bar{u}(p') \left\{ \gamma^{\mu} f(y,0,t) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_{N}} g(y,0,t) \right\} u(p),$$

• Rainbow diagram

$$\pi^{+} < -\otimes -$$

$$f(p) \qquad N \qquad P(p')$$
Splitting functions

③ Sea quark GPDs in the proton can be obtained by the following convolution formalism:

$$H^{\bar{d}}(x,0,t) = \int_{x}^{1} \frac{dy}{y} H^{\bar{d}}_{\pi^{+}}(\frac{x}{y},0,t) f(y,0,t), \qquad E^{\bar{d}}(x,0,t) = \int_{x}^{1} \frac{dy}{y} H^{\bar{d}}_{\pi^{+}}(\frac{x}{y},0,t) g(y,0,t)$$

$$H^{\bar{d}}_{\pi^{+}}(\frac{x}{y},0,t) \text{ is the valance quark GPD in } \pi^{+}, \text{ we use the phenomenological expression } H^{\bar{d}}_{\pi}(x,0,t) = \bar{d}_{\pi}(x) F_{\pi}(t)$$

$$\overset{\text{M. Aicher, A. Schafer and W. Vogelsang, PRL105(2018), 252003}}{11/16}$$

- Introduction to unpolarized GPDs
- Nonlocal chiral effective theory
- Convolution formulas for GPDs of sea quark
- Numerical results

Numerical results ($\xi = 0$)

F. He et al., in preparation

Numerical results (sea quark flavor asymmetry)

F. He et al., in preparation

Numerical results (Strange form factors)

F. He et al., in preparation

• Strange Dirac and Pauli Form factor:

$$F_1^S = \int_0^1 \{H^S(x,0,t) - H^{\bar{S}}(x,0,t)\} dx \qquad F_2^S = \int_0^1 \{E^S(x,0,t) - E^{\bar{S}}(x,0,t)\} dx$$

• Strange Electromagnetic Form factor:

Summary and Outlook

In summary

- We proposed a nonlocal and gauge invariant chiral Lagrangian, the cut-off is naturally introduced in this method.
- We calculate the sea quark zero-skewness GPDs, the asymmetry of sea quark PDF and strange electromagnetic Form factor can be got from GPDs, which are consistent with experimental or Lattice results.

In outlook

- + We can extend our method to calculate the nonzero skewness GPDs, polarized GPDs...
- This method also can be used to calculate the transverse momentum dependent PDFs.

Thank you for your attention!

16/16