

Back-to-back di-π⁰ correlations at STAR

Xiaoxuan Chu (For the STAR Collaboration) September 5-10, 2021

Supported by

Current knowledge of nPDFs

- EPPS16: nuclear gluon distributions have large uncertainties at small x and low Q²
- RHIC data can probe small x and low/moderate Q² where cold nuclear matter (CNM) effect is expected to be strong

Gluon dynamics at small x

- At small x, nucleon wave function is dominated by gluons; the rise of gluon density has to stop at some point → saturation
- Saturation scale Q_s²: when Q² < Q_s², gluon splitting and recombination reach a balance
- Gluon dynamics changes from linear to nonlinear: DGLAP/BFKL → BK/JIMWLK
- Large Q: small $\alpha_s \rightarrow$ perturbative QCD calculations under control

2

Di-hadron production to probe multiple scattering

- two final hadrons in pp and pA
- **pp**: $2 \rightarrow 2$ process \Rightarrow back-to-back di-hadron
- pA: back-to-back configuration is smeared by multiple gluon interactions

 P_{T} is balanced by many gluons

 $x_p \sim \frac{p_{T1e^{\eta_1} + p_{T2e^{\eta_2}}}}{\sqrt{s}} \gg x_A \sim \frac{p_{T1e^{-\eta_1} + p_{T2e^{-\eta_2}}}}{\sqrt{s}}$

Xiaoxuan Chu

PANIC 2021

Di- π^0 correlations in dAu

• dAu: interpretation of the suppression complicated by alternative explanation; much higher pedestal in dAu than in pp

→ pAu collisions are theoretically and experimentally cleaner

PANIC 2021

STAR measurement

- The high energy photon is reconstructed through cluster finding and shower shape fitting
- π^0 , decaying into two photons, is constructed from a pair of photon candidates

$x\mathchar`Q^2$ phase space and $Q_s\mathchar`^2$

R. Abdul Khalek et al., arXiv:2103.05419

Saturation scale Q_s: the inverse of transverse distance between partons; grows with A and decreases with x

x-Q² phase space and Q_s^2

R. Abdul Khalek et al., arXiv:2103.05419

□ STAR FMS data ($\sqrt{s_{NN}} = 200 \text{ GeV}$) can probe the saturation region

 One can study the evolution on x and Q² through scanning p_T

Di- π^0 correlations at STAR

Area (integral from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$), Width (σ) and Pedestal from fit

• Pedestal and width unchanged between pp and pAu collisions

8

Di- π^0 correlations at STAR

∆**(rad**]

Area (integral from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$), Width (σ) and Pedestal from fit **STAR** preliminary ×10⁻³ $\sqrt{s_{_{NN}}}$ = 200 GeV, 2.6 < η < 4 - p₁=2-2.5 GeV, p₂=1-1.5 GeV **STAR Preliminary C**(∆ φ) $\sqrt{s_{NN}}$ = 200 GeV, 2.6 < η < 4 6 p₊^{trig}=1.5-2 GeV/c p₋^{asso}=1-1.5 GeV/c Area ratio pAu/pp + pAl/pp p₁=3-5 GeV, p₂=2-2.5 GeV 0.3 ⊃pp 0.5 **C**(Δφ) 0.2 20000 40000 **Ε.Α. (ΣΕ_{BBC})** 0.1 3 2

• Similar trend of event activity dependence in pAu and pAI: enhanced suppression at high E.A.

Nucleus dependence: enhanced suppression in pAu collisions with respect to pAl collisions

Future measurements on direct photon at STAR

2024 pAu data with STAR forward upgrade + 2015 pAu data:

- R_{pAu}^{γ} of direct photons from q+g \rightarrow q+ γ , free from the final state effects
- Larger luminosity data improve the constraints on gluon distributions
- Challenge: background photons from fragmentation and hadron decays; small cross section of direct photon at forward rapidity

Other future measurements at STAR

2024 pAu with STAR forward upgrade, sensitive to the gluon density at small x

• Jets are better proxies of initial parton kinematics than hadrons:

•
$$\frac{p_{T1e} - y_{1+} p_{T2e} - y_2}{\sqrt{s}} < x_A \text{ for di-hadron}$$

•
$$\frac{p_{T1e} - y_{1+} p_{T2e} - y_2}{\sqrt{s}} \sim x_A \text{ for } \gamma \text{-jet}$$

Summary and outlook

- □ The evidence of a novel universal regime of non-linear gluon dynamics in nuclei is very important to help us understand QCD processes in Cold Nuclear Matter:
 - Understand the collective dynamics of gluons
 - Investigate inner landscape of nuclei: initial state input to eA/pA/AA

Di-hadron correlation is a key measurement in the pA physics program at STAR

- STAR shows a clear signature of non-linear gluon dynamics with di-hadron correlation measurement
- First measurement of nuclear effect dependence on A: stronger suppression in pAu than pAl
- $\circ~$ Event activity dependence: suppression enhanced in "high activity" collisions at low p_T
- □ Future high precision measurements at STAR with forward upgrade for more observables: direct γ , γ -hadron/jet, di-charged hadron, di-jet...