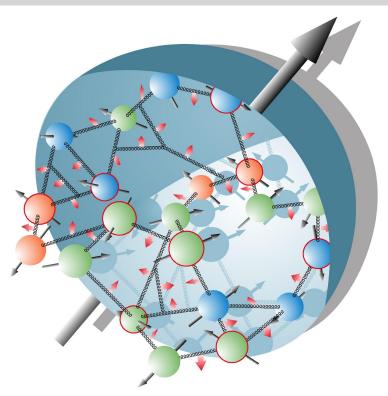
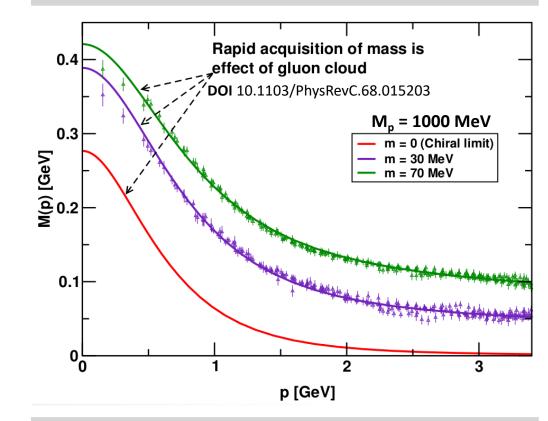
Overview of recent HERMES results on transversemomentum dependent spin asymmetries



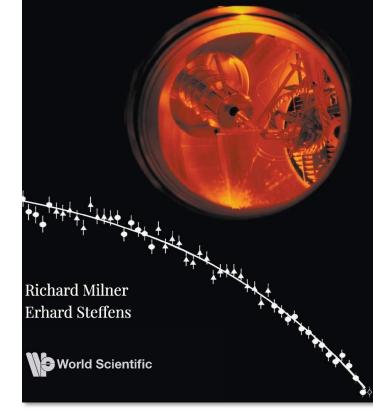
Markus Diefenthaler


The dynamical nature of nuclear matter

Nuclear Matter Interactions and structures, quark and gluons, are inextricably mixed up

Ultimate goal Understand how matter at its most fundamental level is made

Observed properties such as mass and spin emerge out of the complex system

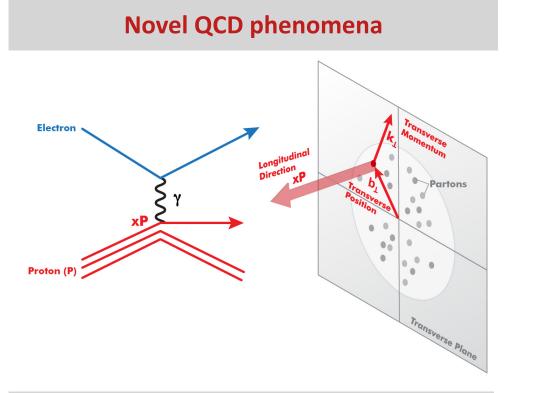

To reach goal precisely image quarks and gluons and their interactions

A reminiscence on the HERMES experiment

A Personal Story

- HERMES Collaboration (1988-now)
 - Several hundred physicists from Europe and North America to study the **spin structure** of nuclear matter.

• HERMES Experiment (1995-2007)


 Technically innovative HERMES experiment at the first electronproton collider, HERA.

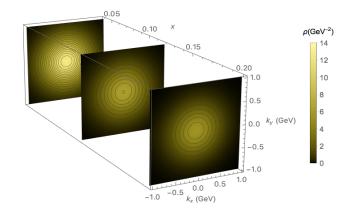
HERMES Legacy

- Considerable impact of scientific results with many pioneering measurements.
- Shaped an entire generation of young people into scientific leaders.

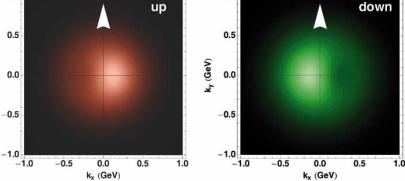
Polarized DIS measurements

3D imaging in space and momentum

longitudinal structure (PDF)

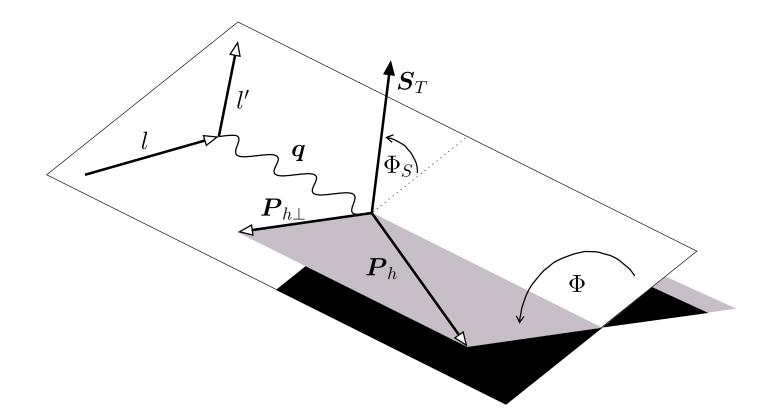

+ transverse momentum information (TMDs)

order of a few hundred MeV


Unpolarized nucleon

JHEP 1706 (2017) 081

1.0



Particles and Nuclei International Conference, September 5, 2021

SSA in SIDIS measurements at HERMES

TSSA at HERMES

- two naive-*T*-odd functions at leading twist:
 - Sivers TMD: Sivers effect $\mathbf{S}_N \cdot (\mathbf{q} \times \mathbf{P}_h)$
 - Collins FF: Collins effect $\mathbf{s}_q \cdot (\mathbf{p}_q \times \mathbf{P}_h)$

Signals for TMD PDFs and TMD FFs

Differential cross section

 $\frac{d\sigma^h}{dxdyd\phi_S dzd\phi d\mathbf{P}_{h\perp}^2} =$

Cross section decomposition in terms of structure functions

 $\begin{bmatrix} F_{\rm UU,T} + \varepsilon F_{\rm UU,L} \\ + \sqrt{2\varepsilon (1+\varepsilon)} \cos (\phi) F_{\rm UU}^{\cos(\phi)} + \varepsilon \cos (2\phi) F_{\rm UU}^{\cos(2\phi)} \end{bmatrix}$

Sivers effect

 $\frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)$

 $+ S_T$

$$\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)}+\varepsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right]$$

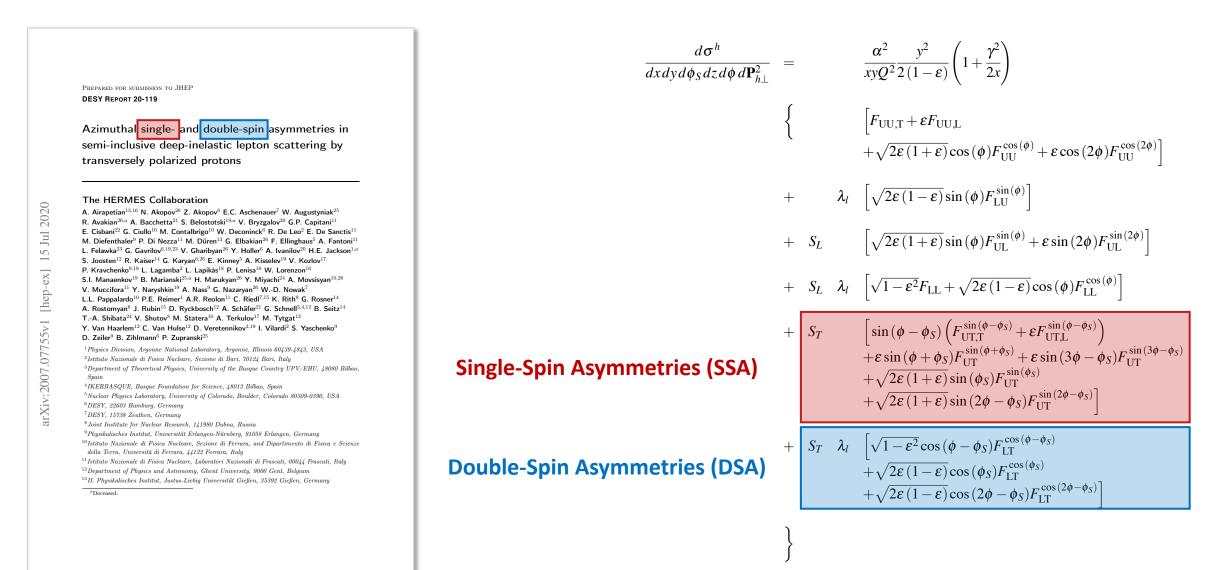
Collins effect

$$+\varepsilon\sin(\phi+\phi_{S})F_{\mathrm{UT}}^{\sin(\phi+\phi_{S})}+\varepsilon\sin(3\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(3\phi-\phi_{S})}$$
$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi_{S})F_{\mathrm{UT}}^{\sin(\phi_{S})}$$
$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(2\phi-\phi_{S})}]$$

Factorized results in terms of TMD PDFs and TMD FFs

at tree-level and twist-2 and twist-3 accuracy

Assuming one-photon exchange, current fragmentation only, TMD factorization hold, small transverse momenta, Gaussian Ansatz valid


Sivers TMD and spin-independent FF

$$F_{\text{UT,T}}^{\sin(\phi-\phi_S)} = \mathscr{C}\left[-\frac{\mathbf{\hat{h}}\cdot\mathbf{p}_T}{M}f_{1\text{T}}^{\perp}D_1\right]$$

Transversity PDF and Collins FF

$$F_{\mathrm{UT}}^{\sin{(\phi+\phi_S)}} = \mathscr{C}\left[-rac{\mathbf{\hat{h}}\cdot\mathbf{k}_T}{M_h}h_1H_1^{\perp}
ight]$$

86 pages, 47 figures, 185 references

PREPARED FOR SUBMISSION TO JHEP DESY REPORT 20-119

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

20

20

5

ex]

[hep-

v:2007.07755v1

A. Airapetian^{13,16} N. Akopov²⁶ Z. Akopov⁶ E.C. Aschenauer⁷ W. Augustyniak²⁵ R. Avakian^{26,a} A. Bacchetta²¹ S. Belostotski^{19,a} V. Bryzgalov²⁰ G.P. Capitani¹¹ E. Cisbani²² G. Ciullo¹⁰ M. Contalbrigo¹⁰ W. Deconinck⁶ R. De Leo² E. De Sanctis¹¹ M. Diefenthaler⁹ P. Di Nezza¹¹ M. Düren¹³ G. Elbakian²⁶ F. Ellinghaus⁵ A. Fantoni¹¹ L. Felawka²³ G. Gavrilov^{6,19,23} V. Gharibyan²⁶ Y. Holler⁶ A. Ivanilov²⁰ H.E. Jackson^{1,a} S. Joosten¹² R. Kaiser¹⁴ G. Karyan^{6,26} E. Kinney⁵ A. Kisselev¹⁹ V. Kozlov¹⁷ P. Kravchenko^{9,19} L. Lagamba² L. Lapikás¹⁸ P. Lenisa¹⁰ W. Lorenzon¹⁶ S.I. Manaenkov¹⁹ B. Marianski^{25,a} H. Marukyan²⁶ Y. Miyachi²⁴ A. Movsisyan^{10,26} V. Muccifora¹¹ Y. Narvshkin¹⁹ A. Nass⁹ G. Nazarvan²⁶ W.-D. Nowak⁷ L.L. Pappalardo¹⁰ P.E. Reimer¹ A.R. Reolon¹¹ C. Riedl^{7,15} K. Rith⁹ G. Rosner¹⁴ A. Rostomyan⁶ J. Rubin¹⁵ D. Ryckbosch¹² A. Schäfer²¹ G. Schnell^{3,4,12} B. Seitz¹⁴ T.-A. Shibata²⁴ V. Shutov⁸ M. Statera¹⁰ A. Terkulov¹⁷ M. Tytgat¹² Y. Van Haarlem¹² C. Van Hulse¹² D. Veretennikov^{3,19} I. Vilardi² S. Yaschenko D. Zeiler⁹ B. Zihlmann⁶ P. Zupranski²⁵ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Snain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA ⁶DESY, 22603 Hamburg, Germany ⁷DESY, 15738 Zeuthen, Germany ⁸Joint Institute for Nuclear Research, 141980 Dubna, Russia ⁹Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara, Italy ¹¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy ¹²Department of Physics and Astronomy, Ghent University, 9000 Gent, Belgium ¹³ II. Physikalisches Institut, Justus-Liebig Universität Gießen, 35392 Gießen, Germany ^aDeceased.

Supplemental material 118 pages, 23 figures, 118 tables

10 type of asymmetries

- 6 SSA
- 4 DSA

7 hadron types

- π⁺, π⁰, π⁻
- K⁺, K⁻
- protons and antiprotons

3D projections and **optimized 1D projections**

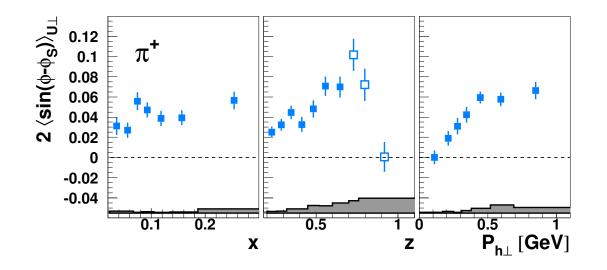
- x 0.023 < x < 0.6 (before x < 0.4)
- z 0.2 < z < 1.2 (before z < 0.7)
- *P*_{h⊥}

2 types of extractions

- Cross-Section Asymmetries (CSA) entire Fourier amplitude of each cross-section contribution.
- Structure-Function Asymmetries (SFA) pure ratios of structure functions, including correction for ε-dependent kinematic prefactors.

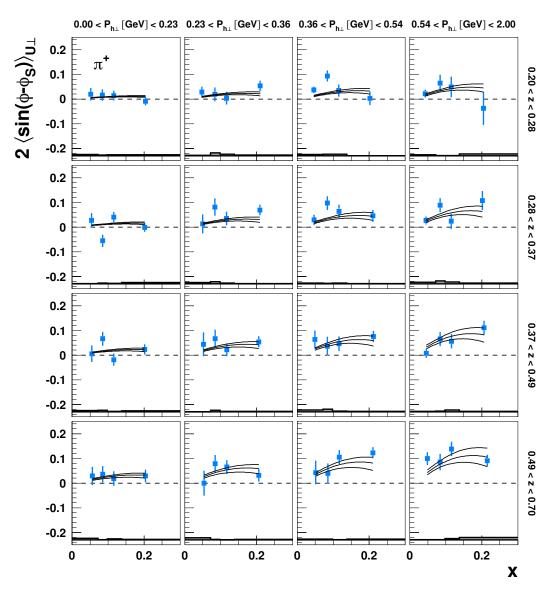
New

SSA and DSA summary

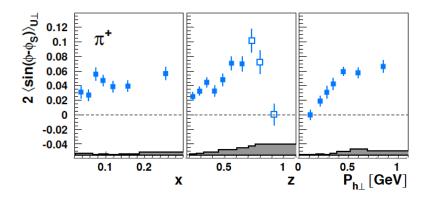

 \checkmark := incompatible with NULL hypothesis at 95% CL (\checkmark) := incompatible with NULL hypothesis at 90% CL

Azimuthal modulation		Significant non-vanishing Fourier amplitude						
		π^+	π^-	K^+	K^{-}	p	π^0	\bar{p}
$\sin\left(\phi\!+\!\phi_S\right)$	[Collins]	\checkmark	\checkmark	\checkmark		\checkmark		
$\sin(\phi - \phi_S)$	[Sivers]	\checkmark		\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$\sin\left(3\phi - \phi_S\right)$	[Pretzelosity]							
$\sin(\phi_S)$		(\checkmark)	\checkmark		\checkmark			
$\sin(2\phi-\phi_S)$								(\checkmark)
$\sin(2\phi + \phi_S)$				\checkmark				
$\cos(\phi - \phi_S)$	[Worm-gear]	\checkmark	(\checkmark)	(\checkmark)				
$\cos(\phi + \phi_S)$			· · ·					
$\cos(\phi_S)$				\checkmark				
$\cos\left(2\phi - \phi_S\right)$								

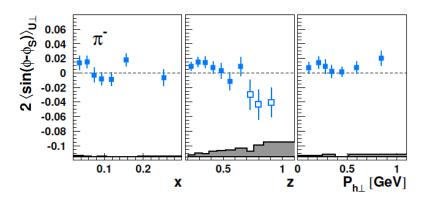
Next slides Discussion of the Sivers amplitudes, expanding on the earlier publication, PRL103 (2009) 152002, where HERMES reported clear evidence for the Sivers effect in SIDIS.

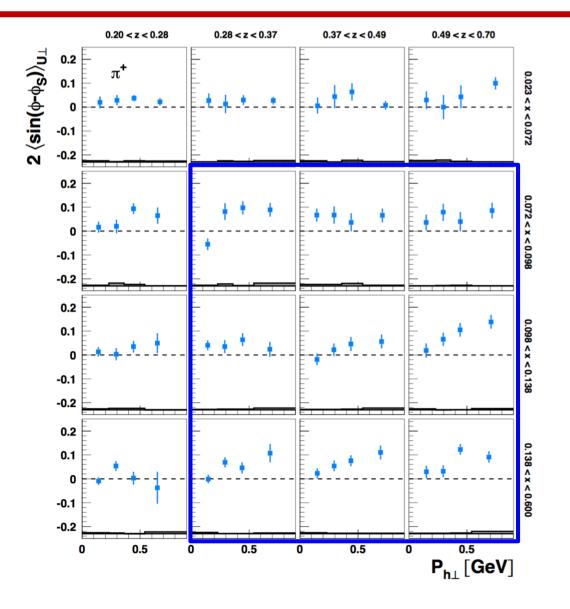


Multi-dimensional analysis

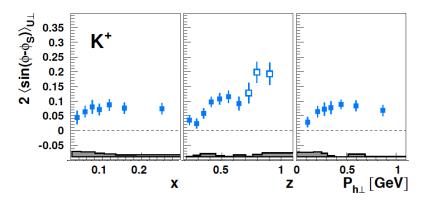

Fully differential approach with small bin-sizes

- minimizes the dominant contributions to the systematic uncertainty, and therefore maximizes the attainable experimental precision
- maximize information for QCD analysis

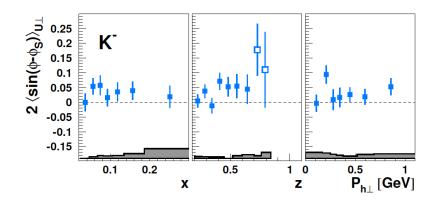


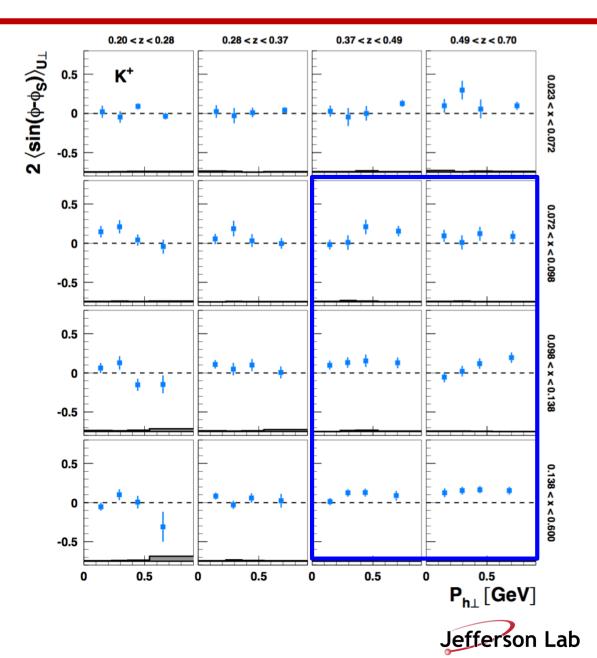

Sivers amplitudes for charged pions

- large positive amplitude \rightarrow clear evidence of non-zero $f_{1T}^{\perp,u}$
- signal rises with x, z and $P_{h\perp}$ in SIDIS region (0.2 < z < 0.7)
- More informative 3D projections confirm and further detail the rise of the amplitude at large x, z and $P_{h\perp}$

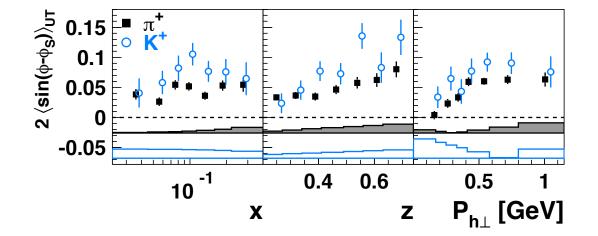


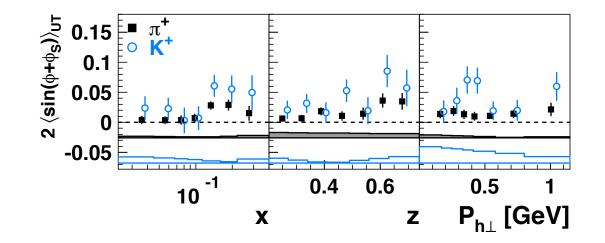
Vanishing due to the cancellation of the opposite Sivers effect for *u* and *d* quarks




Sivers amplitudes for charged kaons

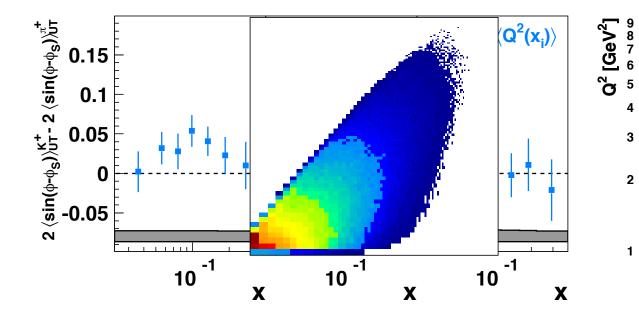
Large positive amplitude, similar kinematic dep. of π^+

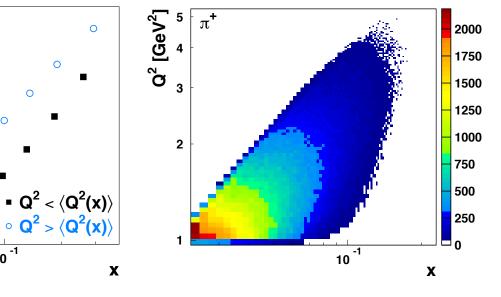



Positive amplitude, different than $\pi^ K^-$ is a pure sea object with no valence quarks in common with target proton

u-quark dominance and the role of higher twist

PRL103 (2009) 152002

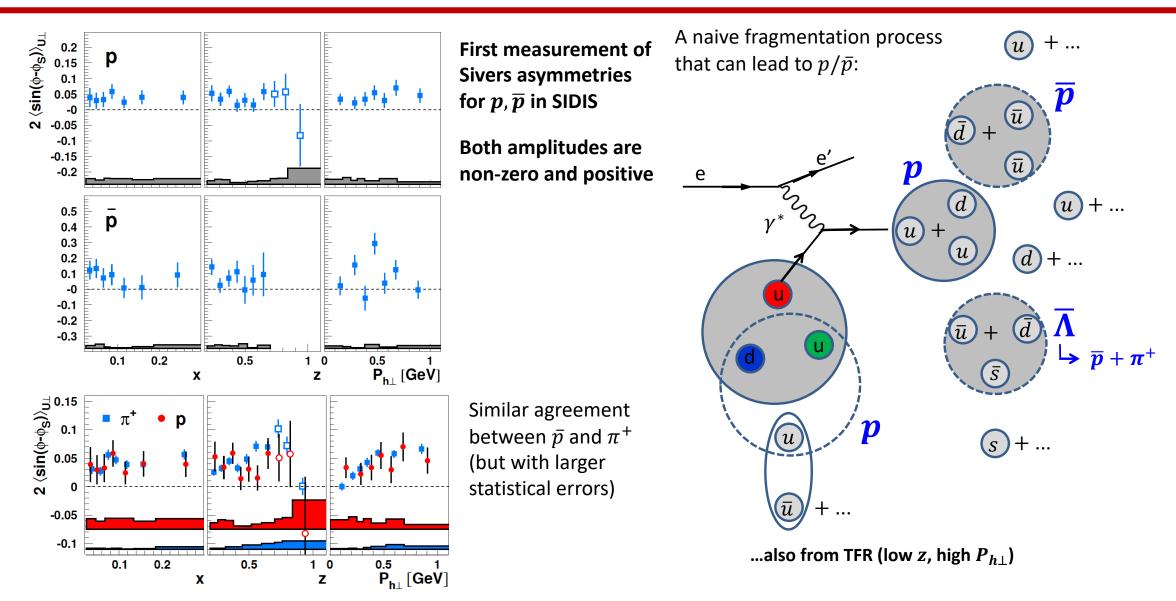

0


0

10⁻¹

0

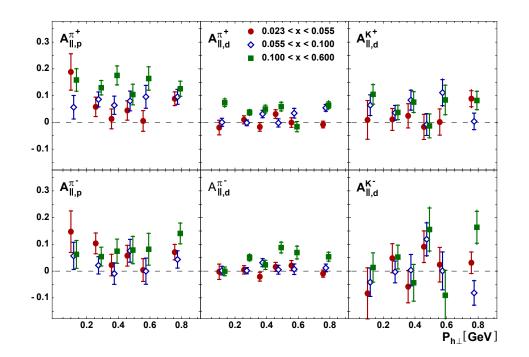
0

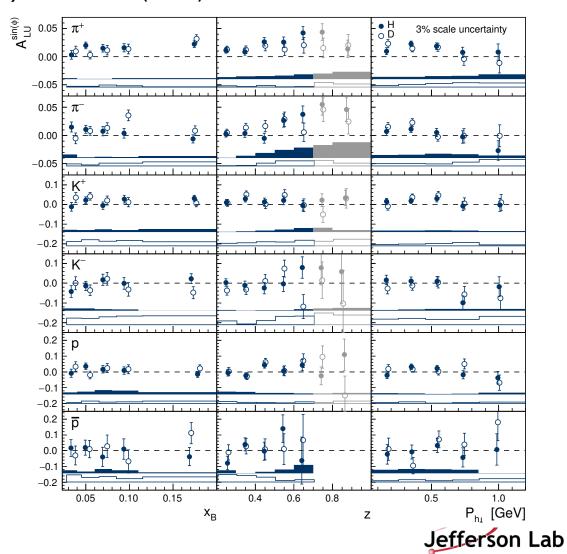


Particles and Nuclei International Conference, September 5, 2021

- π**+**

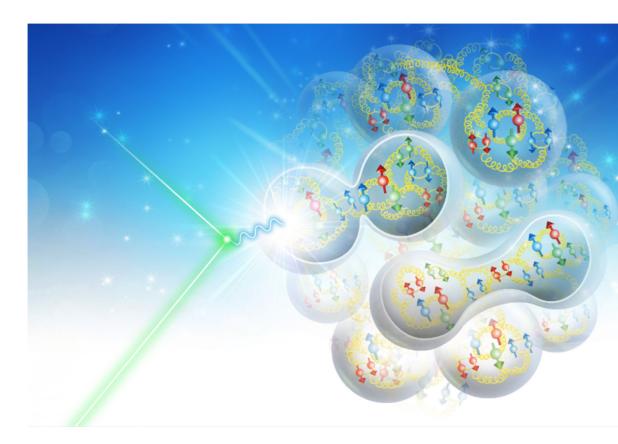
Sivers amplitudes for protons




Additional HERMES results on DSA and SSA

Multidimensional analysis of longitudinal DSA A_{\parallel} in SIDIS, including transverse dependence

Phys.Rev.D 99 (2019) 11, 112001



Multidimensional analysis of beam-helicity asymmetries for single-hadron production in SIDIS *Phys.Lett.B* 797 (2019) 134886

mdiefent@jlab.org

- **TMDs** Imaging quarks and gluons within the nucleon.
- HERMES Pioneering TMD measurements
 - **Recent** HERMES results in 3D binning maximize information for QCD analysis.
- Important guidance for
 - The 12 GeV Science Program at Jefferson Lab Precision TMD studies for valence quarks.
 - Electron-Ion Collider Precision TMD studies for sea quarks and gluons.

