A Common Origin of Muon g-2, B-Meson Anomalies, and Fermion Mass Hierarchies

Anders Eller Thomsen

with J. Fuentes-Martín, A. Greljo & B. Stefanek [211X.XXXXX]

PANIC, September 5th 2021

 $u^{\scriptscriptstyle b}$

[⊅] UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

$b \rightarrow s \ell^+ \ell^-$ anomalies

$$R_{K^{(*)}} = \frac{\mathrm{BR}(B \rightarrow K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \rightarrow K^{(*)} e^+ e^-)}$$

- LHCb measurements of $R_K^{[1,6]}$, $R_{K^*}^{[1.1,6]}$, and $R_{K^*}^{[0.045,1.1]}$ deviate from SM by 3.1σ , 2.5σ , and 2.3σ , respectively
- Average ATLAS, CMS, and LHCb $B_s \rightarrow \mu^+ \mu^$ branching ratio deviate from SM by 2σ Altmanshofer, Stangl [2103.13370]
- Angular observables in $B \to K^* \mu^+ \mu^-$ and branching ratios in $B \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$
- Consistent picture emerges in the EFT (primarily a left-handed current): global 3.9σ significance for NP hypothesis

Lancierini et al. [2104.05631]

PANIC '21 1 / 12

$b \rightarrow c \tau \nu$ anomalies

 b → cℓ(τ)ν occurs a tree-level in the SM. Phase space difference between heavy and light leptons.

 Construct a clean observable: QCD uncertainties largely cancel in the ratio

$$R_{D^{(*)}} = \frac{\mathrm{BR}(B \to D^{(*)} \tau \nu)}{\mathrm{BR}(B \to D^{(*)} \ell \nu)}, \quad \ell = e, \mu$$

 The combined BaBar, Belle, and LHCb measurements deviate from SM prediction by 3.1σ.

2 / 12

Abi et al. [2104.03281]

Borsany et al. [2002.12347]

- First measurement of the Fermilab Muon g-2 Experiment is compatible with the Brookhaven experiment. Combined 4.2σ discrepancy with the Muon g-2 Theory Initiative. Asymmet al. [2006.04822]
- HVP is the dominant error of the SM prediction. Lattice results (BMWc) in potential disagreement with the data-driven calculations (*R*-ratio) used in SM prediction.

3 / 12

Strong constraints from LFV

The lepton mass hierarchy gives generic expectations to the lepton Yukawa:

$$\mathcal{L}_{\rm EFT} \supset -y_e^{ij} \, \bar{\ell}_{\rm L}^i H e_{\rm R}^j, \qquad y_e^{ij} \sim \begin{pmatrix} y_e & \sqrt{y_e y_\mu} & \sqrt{y_e y_\tau} \\ & y_\mu & \sqrt{y_\mu y_\tau} \\ & & y_\tau \end{pmatrix}$$
Flavor basis

Assume a NP explanation of $(g-2)_{\mu}$ with best fit $C_{\mu\mu}$: e.g. Calibbi et al. [2104.03296]

$$\mathcal{L}_{\rm EFT} \supset -e \, v \, C_{e\gamma}^{ij} \, \bar{e}_{\rm L}^i \sigma^{\mu\nu} e_{\rm R}^j F_{\mu\nu}, \qquad C_{e\gamma}^{ij} \sim \begin{pmatrix} \lesssim 10^{-1} & \lesssim 2 \cdot 10^{-5} & \lesssim 1/4 \\ & 1 & \lesssim 1/4 \\ & & \lesssim 2 \cdot 10^5 \end{pmatrix} C_{\mu\mu}$$
Mass basis

Strong constraints from LFV

The lepton mass hierarchy gives generic expectations to the lepton Yukawa:

$$\mathcal{L}_{\rm EFT} \supset -y_e^{ij} \, \bar{\ell}_{\rm L}^i H e_{\rm R}^j, \qquad y_e^{ij} \sim \begin{pmatrix} y_e & \sqrt{y_e y_\mu} & \sqrt{y_e y_\tau} \\ & y_\mu & \sqrt{y_\mu y_\tau} \\ & & y_\tau \end{pmatrix}$$
Flavor basis

Assume a NP explanation of $(g-2)_{\mu}$ with best fit $C_{\mu\mu}$: e.g. Calibbi et al. [2104.03296]

$$\mathcal{L}_{\rm EFT} \supset -e \, v \, C_{e\gamma}^{ij} \, \bar{e}_{\rm L}^i \sigma^{\mu\nu} e_{\rm R}^j F_{\mu\nu}, \qquad C_{e\gamma}^{ij} \sim \begin{pmatrix} \lesssim 10^{-1} & \lesssim 2 \cdot 10^{-5} & \lesssim 1/4 \\ & 1 & \lesssim 1/4 \\ & & \lesssim 2 \cdot 10^5 \end{pmatrix} C_{\mu\mu}$$
Mass basis

Radiative models of the muon mass:

e.g. Baker, Cox, Volkas [2103.13401

Strong constraints from LFV

The lepton mass hierarchy gives generic expectations to the lepton Yukawa:

$$\mathcal{L}_{\rm EFT} \supset -y_e^{ij} \, \bar{\ell}_{\rm L}^i H e_{\rm R}^j, \qquad y_e^{ij} \sim \begin{pmatrix} y_e & \sqrt{y_e y_\mu} & \sqrt{y_e y_\tau} \\ & y_\mu & \sqrt{y_\mu y_\tau} \\ & & y_\tau \end{pmatrix}$$
Flavor basis

Assume a NP explanation of $(g-2)_{\mu}$ with best fit $C_{\mu\mu}$: e.g. Calibbi et al. [2104.03296]

Radiative models of the muon mass:

e.g. Baker, Cox, Volkas [2103.13401]

$$C^{(1)}_{e\gamma} \sim \frac{y^{(1)}_e}{\Lambda^2_{_{
m NP}}} \implies \Lambda_{_{
m NP}} = {\rm few \; TeV}$$

Anders Eller Thomsen (Bern U.)

4 / 12

Hints to a combined explanation

Low-energy effective theory for the anomalies:

5 / 12

Hints to a combined explanation

Low-energy effective theory for the anomalies:

- $\blacksquare~2^{\rm nd}$ generation coupling suppressed by $\sim 0.1.$ Related to CKM flavor structure of the SM?
- All three anomalies point to a common scale $\Lambda_{\rm NP} \sim {\rm few}~{\rm TeV}$

A vector leptoquark?

Pati-Salam-like vector LQ for combined *b* anomaly explanation:

e.g. Di Luzio, Greljo, Nardecchia [1708.08450]; Greljo, Stefanek [1802.04274]; Crivellin, Greub, Saturino [1807.02068]; Di Luzio et al. [1808.00942];...

Realized in flavor non-universal 4321 models with vector-like fermions:

$$\underbrace{\operatorname{SU}(3)_c}_{\operatorname{U}(4) \times \operatorname{SU}(3)' \times \operatorname{SU}(2)_{\mathrm{L}} \times \operatorname{U}(1)_X}_{\operatorname{U}(1)_Y} \xrightarrow{\operatorname{SSB}} \underbrace{\operatorname{SU}(3)_c \times \operatorname{SU}(2)_{\mathrm{L}} \times \operatorname{U}(1)_Y}_{+ \{Z', G', U_1\}}$$

With a right-handed lepton current, we could have

With a right-handed lepton current, we could have

$$\mu_{\rm L} \underbrace{\begin{array}{c} U_1 \\ \downarrow \\ \downarrow \\ H \end{array}}^{M_{\rm INING} \text{ of SM and}} \psi_{\text{vector-like fermions}} \\ \mu_{\rm R} \\ \downarrow \\ H \end{array} \sim y_H (a_\mu^{\rm exp} - a_\mu^{\rm th}) \left(\frac{g_4 \cdot 2 \, {\rm TeV}}{M_{U_1}}\right)^2 \left(\frac{s_{\ell_2}}{0.2}\right) \left(\frac{s_{e_2}}{0.05}\right)$$

Tuning is required, and LFV might be an unavoidable problem:

$$\delta y_{\mu} = y_H s_{\ell} s_{\mu} \sim 10 y_{\mu}^{\text{SM}}, \qquad C_{\mu\tau} \sim C_{\mu\mu} s_{\ell_2}^{-1}$$

With a right-handed lepton current, we could have

$$\mu_{\rm L} \underbrace{\begin{array}{c} U_1 \\ \downarrow \\ \downarrow \\ \downarrow \\ H \end{array}}^{\text{Mixing of SM and}} \chi_{\text{vector-like fermions}} \\ \psi_{\rm L} \underbrace{\begin{array}{c} U_1 \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ H \end{array}}^{\gamma} \\ \mu_{\rm R} \\ \sim y_H (a_\mu^{\rm exp} - a_\mu^{\rm th}) \left(\frac{g_4 \cdot 2 \,\text{TeV}}{M_{U_1}} \right)^2 \left(\frac{s_{\ell_2}}{0.2} \right) \left(\frac{s_{\ell_2}}{0.05} \right)$$

Tuning is required, and LFV might be an unavoidable problem:

$$\delta y_{\mu} = y_H s_\ell s_\mu \sim 10 y_{\mu}^{\rm SM}, \qquad C_{\mu\tau} \sim C_{\mu\mu} s_{\ell_2}^{-1}$$

Incorporate radiative lepton masses in a 4321 model: A model of all three anomalies with partial explanation of the mass hierarchy

A new universal 4321 model

	Fields	SU(4)	$\mathrm{SU}(3)'$	${ m SU}(2)_{ m L}$	$\mathrm{U}(1)_X$	Z_2	Flavor
ſ	$q^i_{ m L}$	1	3	2	$^{1}/_{6}$	+	3_q
	$u^i_{ m R}$	1	3	1	$^{2}/_{3}$	+	3_{u}
	$d^i_{ m R}$	1	3	1	$^{-1}/_{3}$	_	3_d
	$\ell^i_{ m L}$	1	1	2	$^{-1}/_{2}$	+	3_ℓ
	$e^i_{ m R}$	1	1	1	-1	—	3_ℓ
5	$\chi^i_{ m L,R}$	4	1	2	0	+	3_{χ}
	Н	1	1	2	$^{1}/_{2}$	+	1
	Ω_1	4	1	1	$^{1}/_{2}$	+	1
	Ω_3	4	$\overline{3}$	1	$^{-1}/_{6}$	+	1
	Ω_{15}	15	1	1	0	+	1
ſ	Π_e	4	1	2	1	—	1
	Π_d	4	$ar{3}$	2	$^{1}/_{3}$	—	1

A new universal 4321 model

	Fields	SU(4)	$\mathrm{SU}(3)'$	${ m SU}(2)_{ m L}$	$\mathrm{U}(1)_X$	Z_2	Flavor	
ſ	$q^i_{ m L}$	1	3	2	$^{1}/_{6}$	+	3_q	
	$u^i_{ m R}$	1	3	1	$^{2}/_{3}$	+	3_{u}	
	$d^i_{ m R}$	1	3	1	$^{-1}/_{3}$	_	3_d	
	$\ell^i_{ m L}$	1	1	2	$^{-1}/_{2}$	+	3_ℓ	
15a V	$e^i_{ m R}$	1	1	1	-1	—	$ 3_{\ell}\rangle^{-}$	
Univer for lies	$\chi^i_{ m L,R}$	4	1	2	0	+	3_{χ}	Lot edi
31101	Н	1	1	2	$^{1}/_{2}$	+	1	Struct 1/2
	Ω_1	4	1	1	$^{1}/_{2}$	+	1	yre T
	Ω_3	4	$ar{3}$	1	$^{-1}/_{6}$	+	1	
ļ	Ω_{15}	15	1	1	0	+	1	1:1
wet or	Π_e	4	1	2	1	_	1	L / /
Doub the	Π_d	4	3	2	$^{1}/_{3}$	_	1	
mas		-						

Forbids tree-level down-type masses (softly broken)

Radiative muon mass

Lepton-flavored spurions $\eta_\ell = (\mathbf{3}_\ell, \, \mathbf{\bar{3}}_\chi)$ and $\eta_e = (\mathbf{3}_\chi, \, \mathbf{\bar{3}}_\ell)$ are identified:

$$\mathcal{L}_{\rm yuk} \supset -\eta_{\ell}^{ij} \overline{\ell}_{\rm L}^{i} \Omega_1 \chi_{\rm R}^j - \eta_e^{ij} \overline{\chi}_{\rm L}^i \Pi_e e_{\rm R}^j + \text{ h.c.} , \qquad \eta_e \sim \eta_{\ell}^{\dagger}$$

Radiative muon mass

Lepton-flavored spurions $\eta_\ell = (\mathbf{3}_\ell, \, \mathbf{\bar{3}}_\chi)$ and $\eta_e = (\mathbf{3}_\chi, \, \mathbf{\bar{3}}_\ell)$ are identified:

$$\mathcal{L}_{\rm yuk} \supset -\eta_\ell^{ij} \overline{\ell}_{\rm L}^i \Omega_1 \chi_{\rm R}^j - \eta_e^{ij} \overline{\chi}_{\rm L}^i \Pi_e e_{\rm R}^j \ + \ {\rm h.c.} \ , \qquad \eta_e \sim \eta_\ell^\dagger$$

Approximate \mathbb{Z}_2 symmetry forbids lepton-Higgs coupling and ensures alignment of the Yukawa contributions

Lepton–Higgs Yukawas are suppressed: $y_{\tau(b)} \sim y_t/100$

Radiative muon mass

Lepton-flavored spurions $\eta_\ell = (\mathbf{3}_\ell, \, \mathbf{\bar{3}}_\chi)$ and $\eta_e = (\mathbf{3}_\chi, \, \mathbf{\bar{3}}_\ell)$ are identified:

$$\mathcal{L}_{\rm yuk} \supset -\eta_\ell^{ij} \bar{\ell}_{\rm L}^i \Omega_1 \chi_{\rm R}^j - \eta_e^{ij} \overline{\chi}_{\rm L}^i \Pi_e e_{\rm R}^j \ + \ {\rm h.c.} \ , \qquad \eta_e \sim \eta_\ell^\dagger$$

Approximate \mathbb{Z}_2 symmetry forbids lepton-Higgs coupling and ensures alignment of the Yukawa contributions

Lepton–Higgs Yukawas are suppressed: $y_{\tau(b)} \sim y_t/100$

Approximate prediction of compositeness of the leptons from lepton masses:

$$t_{\ell_i} = rac{\eta_\ell^i \langle \Omega_1
angle}{M_L} \implies rac{t_{\ell_2}^2}{t_{\ell_3}^2} \sim rac{m_\mu}{m_ au},$$

in excellent agreement with $(s_{\ell_3}, s_{\ell_2}) \simeq (0.8, 0.3)$ required for *b*-anomalies.

Lepton dipole

- Size of the dipole fits well with Δa_{μ} given the radiative lepton Yukawa.
- LFV stems from the colored components of $\chi = (WQ, L)$:

- A GIM mechanism in the flavor-violating loops further suppresses LFV at the order of magnitude level.
- Likely in Belle-II discovery range for $\tau \rightarrow \mu \gamma$ (preliminary).

A unified model

This extension lends itself well to embedding in a larger symmetry, e.g. Fuentes-Marín, Stangl [2004.11376]

 $\mathrm{SU}(4) \times \mathrm{SU}(3)' \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_X \subseteq \mathrm{SU}(4) \times \mathrm{SU}(4)' \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}},$

with field content

Fields	SU(4)	SU(4)'	${\rm SU}(2)_{\rm L}$	$SU(2)_R$
$\psi^i_{ m L}$	1	4	2	1
$\psi^i_{ m R}$	1	4	1	2
$\chi^i_{ m L,R}$	4	1	2	1
\mathcal{H}	1	1	2	$\overline{2}$
Ω	4	$ar{4}$	1	1
Ω_{15}	15	1	1	1
П	4	$ar{4}$	2	$\overline{2}$

Conclusions and outlook

- $b \to s\ell\ell$, $b \to c\tau\nu$, and $(g-2)_{\mu}$ anomalies all point to the scale of a few TeV, once accounting for a CKM-like flavor structure.
- The b-anomalies are explained nicely with the vector LQ of 4321 models.
- The $(g-2)_{\mu}$ can be incorporated and LFV suppressed when structure is added to realize radiative lepton masses \rightarrow new class of 4321 models.
- This structure can also accounts for the SM mass hierarchies, $y_{\tau(b)} \sim y_t/100.$

Conclusions and outlook

- $b \to s\ell\ell$, $b \to c\tau\nu$, and $(g-2)_{\mu}$ anomalies all point to the scale of a few TeV, once accounting for a CKM-like flavor structure.
- The b-anomalies are explained nicely with the vector LQ of 4321 models.
- The $(g-2)_{\mu}$ can be incorporated and LFV suppressed when structure is added to realize radiative lepton masses \rightarrow new class of 4321 models.
- This structure can also accounts for the SM mass hierarchies, $y_{\tau(b)} \sim y_t/100.$

Thank you for listening