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from physics beyond the SM?

Further puzzles arise
Extracting the Branching Ratios of 
and combining with info from semi-leptonic       decays 

B̄0
s → D±

s K∓

B(s) } tension with 
QCD factorisation 

which we also obtain in other decays  
with similar dynamics

We need to shed more light on the situation!
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We can check whether these values are consistent with the branching ratio of similar decays 
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SU(3) flavour

T: tree topologies 
E: exchange topologies



Branching Ratio Consistency

Different spectator quark 
Originate from similar quark level processes 
Do not receive contributions from exchange topologies

We determine the ratios

Consistent with the smallest impact of the exchange topologies

SU(3) flavour

U spin symmetry 

Working with similar ratios, we obtain consistent results within uncertainties

T: tree topologies 
E: exchange topologies



Factorisation

The state-of-the-art results

Can be used to calculate the ratios of colour allowed tree amplitudes we mentioned in the previous slide

Within the SM, we may write the decay amplitude of                         asB̄0
s → D+

s K−

ASM
B̄0s →D+s K− = GF

2
V*usVcb fK FBs→Ds

0 (m2
K) (m2

Bs
− m2

Ds
) aDsK

1 eff



Factorisation

The state of the art results

Can be used to calculate the ratios of colour allowed tree amplitudes we mentioned in the previous slide

Within the SM, we may write the decay amplitude of                         asB̄0
s → D+

s K−

ASM
B̄0s →D+s K− = GF

2
V*usVcb fK FBs→Ds

0 (m2
K) (m2

Bs
− m2

Ds
) aDsK

1 eff

No anomalous behaviour of exchange diagrams  
Consistency



Factorisation

 

 

to handle  
VCKM  elements and  
hadronic form factors
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Semi-leptonic Decays

We can calculate 

    With the help of the rates of the Branching ratios with the semi-leptonic decays

}
Similarly, you calculate

|aDsK
1 |

RD+s K− ≡ ℬ(B̄0
s → D+

s K−)th
dℬ (B̄0s → D+s ℓ−ν̄ℓ)/dq2 |q2=m2

K

RD+s K− = 6π2f 2
K |Vus |2 |aDsK

1 eff |2 XDsK

XDsK =
(m2

Bs
− m2

Ds
)2

[m2
Bs

− (mDs
+ mK)2][m2

Bs
− (mDs

− mK)2] [ FBs→Ds
0 (m2

K)
FBs→Ds

1 (m2
K) ]

2

|aKDs
1 |

Similar pattern 

Although factorisation may not work that well 
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Puzzling Patterns 
Parameter α 1
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In view of   
  the intriguing value of γ and 
  the puzzling picture following from branching ratios 

          we extend our analysis and  
          we search for physics beyond the Standard Model 
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In the presence of New Physics, we introduce the following quantities:

b̄ ≡
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6π2f 2
K |Vus |2 |aDsK

1 eff |2 XDsK
= ⟨ℬ(B̄0

s → D+
s K−)th⟩
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th
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b ≡
⟨RKDs

⟩
6π2f 2

Ds
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1 eff |2 XKDs

= ⟨ℬ(B̄0
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= 1 + 2 ρ cos δ cos φ + ρ2
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New Physics Parameters Correlations

tan Δφ = ρ sin φ + ρ̄ sin φ̄ + ρ̄ρ sin(φ̄ + φ)
1 + ρ cos φ + ρ̄ cos φ̄ + ρ̄ρ cos(φ̄ + φ)

Collecting the previous relations:

Δφ = Δφ̄ = γ − γeff

And with the following expressions:

ρ̄ = − cos φ̄ ± b̄ − sin2 φ̄

ρ = − cos φ ± b − sin2 φ

assuming that the strong phase δ=0, we get correlations between the NP parameters
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We can get such values of γ without having 
enormously large NP contributions



Final Remarks



Clean and unambiguous determination of the UT angle γ

Final Remarks

Determination of the individual Branching ratios of                         and                          from data    B̄0
s → D+

s K− B0
s → D+

s K−

Properly accounting for neutral mixing effects

Generalization of the LHCb assumption that direct CP Violation vanishes in B0
s → D±

s K∓

Determination of α1  parameters using rates with semileptonic decays

Generalization of the expressions of the branching ratios

Moderate NP contributions to accommodate the current data 

High precision frontier of precision physics is ahead:  

Can we pin down new sources of CP Violation? 



Thank you!


