Recent Results from the Gluonic eXcitation Experiment (GlueX) at JLab

Daniel Lersch

(For the GlueX Collaboration)

Florida State University

05.09.2021

PANIC 2021

The **Gl**uonic **eX**citations (**GlueX**) Experiment at Jefferson Lab

Experimental Hall D:

- Over 130 scientists from:
 - 30 Institutions
 - 10 Countries
- Experiments with polarized photon beam

Phase	GlueX-I	GlueX-II
Run Period	2017-2018	(2020 -)
Raw Data [PB]	4	> 5
Luminosity $[pb^{-1}]$	300	\sim 3 \times GlueX-I

Physics with polarized Photon Beams

- $\bullet~12\,{\rm GeV}$ electron beam on diamond radiator
- Tagged photon beam with $\sigma({\it E})/{\it E}\sim 1\%$
- Coherent peak*:

 E_{γ} Average polarization Trigger rate $\begin{array}{l} 8.4\,{\rm GeV}\ -\ 9.0\,{\rm GeV}\\ &\sim 35\%\\ &\sim 40\,{\rm kHz} \end{array}$

* "The GlueX Beamline Detector"

NIM A987, 164807 (2021)

Two Quark Configurations - Mesons

Characterize qq̄-states:

Spin: $S = \frac{1}{2} \pm \frac{1}{2} = 0, 1$

Orbital angular momentum: $L = 0, 1, 2, \cdots$

• Forbidden J^{PC} -states \Rightarrow Exotic quantum numbers: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻

Two Quark Configurations - Mesons

Characterize qq̄-states:

Spin: $S = \frac{1}{2} \pm \frac{1}{2} = 0, 1$

Orbital angular momentum: $L = 0, 1, 2, \cdots$

• Forbidden J^{PC} -states \Rightarrow Exotic quantum numbers: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻ \Rightarrow Hybrid Mesons

Exotic $J^{PC} = 1^{-+}$ States

- Experimental evidence: $\pi_{1}(1600) \rightarrow \begin{cases} \pi\pi\pi \\ \rho^{0}\pi^{-} \\ b_{1}(1235)\pi \\ \eta'\pi^{-} \\ f_{1}(1285)\pi \end{cases}$ • Input from Lattice QCD
- Input from Lattice QCD hadspec coll. Phys. Rev. D 88, 094505 (2013)
- Fit of COMPASS PWA $\eta^{(\prime)}\pi\text{-data}$ by JPAC (Phys. Rev. Lett. 122, 042002)

5 / 15

Exotic $J^{PC} = 1^{-+}$ States

- Experimental evidence: $\pi_{1}(1600) \rightarrow \begin{cases} \pi\pi\pi \\ \rho^{0}\pi^{-} \\ b_{1}(1235)\pi \\ \eta'\pi^{-} \\ f_{1}(1285)\pi \end{cases}$ • Input from Lattice QCD hadspec coll. Phys. Rev. D 88, 094505 (2013)
- Fit of COMPASS PWA $\eta^{(\prime)}\pi$ -data by JPAC (Phys. Rev. Lett. 122, 042002) \Rightarrow Exotic π_1 resonant pole: mass = $(1546 \pm 24 \pm 86)$ MeV and width = $492 \pm 54 \pm 102$

Exotic Search with GlueX

05.09.2021 6 / 15

Photoproduction of η Mesons

- Determine beam asymmetry* $\Sigma = \frac{\sigma_{\parallel} \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}}$ * Phys. Rev. C100, 052201(R) (2019)
- η Production mechanism:
 via ρ and ω exchange
- Consistent observation with cross-section measurement
 - Compare different η -decay modes
 - Understand detector acceptance
- Determined beam asymmetry for $\eta' \rightarrow$ same production mechanism

$\eta/\eta^{(\prime)}$ Decays

$n/\eta^{(\prime)}$ Decays

$\eta/\eta^{(\prime)}$ Decays

$\eta/\eta^{(\prime)}$ Decays

Dalitz Plot Analysis

- Decay width $\Gamma(\eta \to \pi^+\pi^-\pi^0)$: $\Gamma \propto Q^{-4}, \ Q^2 = \left(\frac{m_s}{m_d}\right) \times \left[1 - \left(\frac{m_u}{m_d}\right)^2\right]^{-1} \Rightarrow \text{Access to quark mass ratio}$ $\frac{d^2\Gamma}{dXdY} \propto (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + hXY^2 + lX^3 + \cdots)$
- Dimensionless variables: $X = \sqrt{3}(T_{\pi^+} - T_{\pi^-})/\Sigma_T \rightarrow \text{Sensitive to charge conjugation}$ $Y = 3T_{\pi^0}/\Sigma_T - 1$
- C-conservation: $c = e = h = I = 0 \rightarrow$ symmetric X-distribution

Tensions between KLOE and WASA results
 KLOE coll., JHEP, 019, (2016) // WASA-at-COSY coll., Phys. Rev., C90(045207), (2014)

 JPAC used KLOE and WASA results to determine: Q = 21.6 ± 1.1

Peng Guo et al., Phys. Lett., B771(497-502), (2017)

Daniel Lersch (FSU)

PANIC 2021

Results from GlueX

- No C-violation observed \Rightarrow X-check detector acceptance
- Analysis under review soon

C Daniel Lersch (FSU)

e

-0.05

-0.10

PANIC 2021

Search for gauge Bosons in $\eta \to \pi^0 \gamma \gamma$

- χPTh : Major contributions to decay width $\sim \mathcal{O}(p^6)$
- Possible decays:

- Challenging background: $\eta \rightarrow 3\pi^0$
- Detector upgrade of GlueX forward calorimeter \Rightarrow Improve performance

Studying the $\eta\pi^{\rm 0}$ System

- Analysis of GlueX I data
- Goal: Extract π_1 -signal
- Intermediate Goal: Test / tune and validate amplitude analysis on a2(1320)
 - Dominantly produced in D⁺₂ wave
 - Significant S-wave contributions

Charmonium Production near Threshold

leading-twist

higher-twist

- Study gluonic field in nucleon
- Search for pentaquark candidates P_c
- LHCb reported three candidates

$J/\psi ightarrow e^+e^-$ at GlueX

Phys. Rev. Lett. 123, 072001 (2019)

- Reconstructed pprox 470 $J\psi
 ightarrow e^+e^-$ events from \sim 20% of phase I data
- Measured cross section for $E_{\gamma} \in [8.2 \, \text{GeV}, 11.8 \, \text{GeV}]$

• Determine model dependent upper limits on LHCb P_c^+ states (at 90% CL)

Branching ratio	Upper limit [%]
$P_c^+(4312) \rightarrow J\psi p$	4.6
$P_c^+(4440) \rightarrow J\psi p$	2.3
$P_c^+(4457) \rightarrow J\psi p$	3.8

- Analysis of full GlueX data is ongoing
- Explore further decay modes (e.g. $J/\psi \rightarrow \mu^+\mu^-$, $\chi_{c1} \rightarrow \gamma J/\psi$, $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$)

Summary and Outlook

- Rich and diverse physics program at GlueX
- Search for exotic mesons
 - Study "known" final states (e.g. $\eta \pi$, $\omega \pi$,..)
 - Develop amplitude analysis tools
 - Extend search to other J^{PC} -states
- Search for pentaquark states with $J/\psi
 ightarrow e^+e^-$
- Analysis of η meson decays
 - Dalitz plot analysis
 - Physics beyond the Standard Model
 - Understand detector performance and acceptance
- Unfortunately did not show all ongoing efforts
 - Analysis for spin density matrix elements
 - Exotic searches with vector-pseudoscalar final states
 - Dalitz plot analysis for $\eta' \to \eta \pi \pi$, $\eta \to 3\pi^0$
 - ► ...
- Close collaboration with theory
- Analysis of phase-II data ongoing

GlueX acknowledges the support of several funding agencies and computing facilities (gluex.org/thanks)