

Light meson spectroscopy at BESIII

Tingting Han Shandong University (On behalf of BESIII Collaboration)

Lisboa, Portugal 22nd Particle and Nuclei International Conference

Outline

>Introduction

Search for Glueball

• Scalar Glueball, Tensor Glueball, Pseudoscalar glueball

> The structure near $p\bar{p}$ threshold

>Strange quarkonium($s\bar{s}$)

≻Summary

Introduction

- Key tool to test QCD theory in nonperturbative region
- Understanding of the quark and gluon confinement

Conventional quark model

Image: ConstraintImage: Constraint

BESIII data sets

 $\sqrt{s} = 2.0 - 4.95 \, GeV$ Luminosity:1×10³³cm⁻²s⁻¹

Largest J/ψ and $\psi(2S)$ datasets in the world!!

➢ BESIII's advantages

- Clean high statistics data sample
- "Gluon-rich" process
- $\succ I(J^{pc})$ filter
 - Ideal place for study light hadron spectroscopy

Glueball

- Searching for glueball provides a direct fundamental test of the QCD theory.
- Lattice QCD predicts the low lying mass spectrum for glueballs
 - 0^{++} ground state: 1.5-1.7 *GeV*/ c^2
 - 2^{++} ground state: 2.3-2.4 *GeV*/ c^2
 - 0^{-+} ground state: 2.3-2.6 *GeV*/ c^2
- Low lying glueballs with ordinary quantum number , can be mixed with nearby $q\bar{q}$ states
 - Systematical study is needed in the identification

Scalar glueball

Phys. Rev. D 98, 072003 (2018)

Result of $J/\psi \rightarrow \gamma K_s K_s$

$\begin{array}{c} \mathbf{\hat{S}} \\ \mathbf{\hat{S}} \\$
--

 \blacktriangleright PWA of $I/\psi \rightarrow \gamma \eta \eta$

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance	Decemence	$M_{acc}(M_{a}V/c^2)$	Width (MaV/2)	P(I/d) a V) amm)	Cimifican
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ	Resonance	Mass(MeV/C)	width(Mev/c)	$\mathcal{B}(J/\psi \to \gamma \Lambda \to \gamma \eta \eta)$	Significan
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ	f(1500)	1469+14+23	$126 \pm 41 \pm 28$	$(1.65 \pm 0.26 \pm 0.51) \times 10^{-5}$	<u> </u>
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08}_{-0.07}^{+0.08}_{-0.34}) \times 10^{-5}$	25σ	$J_0(1300)$	1400_{-15-74}	$130_{-26-100}$	$(1.03_{-0.31-1.40}) \times 10$	0.20
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ	$f_{1}(1710)$	$1750\pm 6^{+14}$	$172\pm10^{+32}$	$(2.25^{+0.13+1.24}) \times 10^{-4}$	25 O a
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03}_{-0.02}^{+0.03}_{-0.10}) \times 10^{-4}$	$\gg 35\sigma$	<i>J</i> ₀ (1710)	$1759\pm0_{-25}$	$172\pm10_{-16}$	$(2.33_{-0.11-0.74}) \times 10$	20.0 0
$f_0(1790)$	$1870 \pm 7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ	$f_{0}(2100)$	$2081 \pm 13^{+24}$	272+27+70	$(1.13^{+0.09+0.64}) \times 10^{-4}$	130 a
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364\pm9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08}_{-0.06}^{+0.17}) \times 10^{-4}$	$\gg 35\sigma$	$J_0(2100)$	$2001 \pm 10_{-36}$	210-24-23	$(1.10 - 0.10 - 0.28) \times 10$	10.0 0
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21}_{-0.21}{}^{+0.66}_{-0.21}) \times 10^{-5}$	35σ	f'(1525)	$1512 \pm 5^{\pm 4}$	75+12+16	$(2.49^{+0.43+1.37}) \times 10^{-5}$	11 0 g
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08}_{-0.09}^{+0.59}) \times 10^{-5}$	33σ	$J_2(1020)$	1010±0-10	10-10-8	$(0.42 - 0.51 - 1.30) \times 10$	11.0 0
$f'_2(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03}_{-0.04}^{+0.03}_{-0.05}) \times 10^{-5}$	$\gg 35\sigma$	$f_{1}(1810)$	1822 + 29 + 66	220 + 52 + 88	$(5.40^{+0.60+3.42}) \times 10^{-5}$	61 0
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345_{-40}^{+50}	$507\pm 37^{+18}_{-21}$	322^{+70}_{-60}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ	<i>J</i> ₂ (1010)	1022 - 24 - 57	229-42-155	$(0.40 - 0.67 - 2.35) \times 10$	0.40
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ	$f_{-}(2240)$	0260 + 31 + 140	224+62+165	$(5.60^{+0.62+2.37}) \times 10^{-5}$	76 0
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-2.74}) \times 10^{-5}$	13σ	$J_2(2340)$	2002-30-63	JJ4-54-100	$(0.00_{-0.65-2.07}) \times 10$	1.0 0

- Mass independent approach has been performed on $J/\psi \rightarrow \gamma \pi_0 \pi_0$
- ➤ The contribution around 1.5 GeV and 1.7GeV are scalar states
- $f_0(1710) \sim 10$ times larger production rate than $f_0(1500)$ in J/ $\psi \rightarrow \gamma K_s K_s$ and J/ $\psi \rightarrow \gamma \eta \eta$

Scalar glueball

LQCD prediction of scalar glueball

Mass: 1.5-1.7 GeV/
$$c^2$$
 Phys.Rev.Lett. 110 (2013) 2, 021601

 $\succ \Gamma(J/\psi \rightarrow \gamma G_{0^+})/\Gamma_{tot} = 3.8 \times 10^{-3}$

Measurement form BESIII

- $B(J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma K \overline{K}) = (9.62 \pm 0.29)^{+2.11}_{-1.86} \times 10^{-4}$
- $B(J/\psi \to \gamma f_0(1710) \to \gamma \pi \pi) = (4.0 \pm 0.06 \pm 1.1) \times 10^{-4}$
- $B(J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \omega \omega) = (3.1 \pm 0.6 \pm 0.78) \times 10^{-4}$
- $B(J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta) = 2.35^{+0.13+1.24}_{-0.11-0.74} \times 10^{-4}$

$\Rightarrow B(J/\psi \rightarrow \gamma f_0(1710)) > 1.9 \times 10^{-3}$

*F*₀(1710) has ~10 times larger production rate than *f*₀(1500)
 *F*₀(1710) has more gluonic component than *f*₀(1500)

Tensor glueball

LQCD prediction of tensor glueball

Mass: 2.3-2.4 GeV/ c^2 Phys.Rev.Lett. 111 (2013) 9, 091601 > $\Gamma(J/\psi \rightarrow \gamma G_{2^+})/\Gamma_{tot} = 1.1 \times 10^{-2}$

The results of the experiment

$$\blacktriangleright \quad B(J/\psi \to \gamma f_2(2340) \to \gamma \eta \eta) = 3.8^{+0.62+2.37}_{-0.65-2.07} \times 10^{-5}$$

$$\succ \quad B(J/\psi \to \gamma f_2(2340) \to \gamma \varphi \varphi) = (1.91 \pm 0.14^{+0.72}_{-0.73}) \times 10^{-4}$$

- $\blacktriangleright \quad B(J/\psi \to \gamma f_2(2340) \to \gamma K_s K_s) = (5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$
- Consistent with WA102 experiment *Phys.Lett.B* 471 (2000) 429-434 \Rightarrow need to search for more decay modes

2021/9/5

Pseudoscalar glueball

LQCD prediction of scalar glueball

- ➢ Mass: 2.3-2.6 GeV/c² Phys. Rev. D 73, 014516
- $\succ \Gamma(J/\psi \rightarrow \gamma G_{0^-}) = 2.31 \times 10^{-4}$

- > The *X*(2370) is first observed in the process of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$
- Based on chiral effective Lagrangian with mass of X(2370), the

predicted branching ratio of pseudoscalar glueball is : $B(G \rightarrow$

 $\eta\eta\eta'$): $B(G \to KK\eta')$: $B(G \to \pi\pi\eta') = 0.00082, 0.011, 0.09$ Phys. Rev. D 87, 054036 (2013).

Phys. Rev. Lett. 106 (2011) 072002

Pseudoscalar glueball

- $\succ X(2370) \text{ is observed in } J/\psi \rightarrow \gamma K \overline{K} \eta' ; B(J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma K \overline{K} \eta') = (1.79 \pm 0.23 \pm 0.65) \times 10^{-5}$
- → No X(2370) signal in J/ ψ → γηηη', B(J/ ψ → γX(2370) → γηηη') < 9.2×10⁻⁶ at 90% C.L.
- > No contradiction to the calculation for X(2370) as 0^{-+} glueball

 \blacktriangleright More decay modes are needed and with high statistics J/ ψ data to determine its J^{PC}

The structure near $p\bar{p}$ threshold

- > The $p\overline{p}$ mass threshold enhancement was first observed in $J/\psi \rightarrow \gamma p\overline{p}$ decays Phys. Rev. Lett. 108, 112003
- First observation of the X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ at BESII, then confirmed by BESIII, *Phys. Rev. Lett.* 106 (2011) 072002 also observed in $J/\psi \rightarrow \gamma K_s K_s \eta$ *Phys.Rev.Lett.* 115 (2015) 9, 091803
- > The spin-parity of X(1835) and $X(p\overline{p})$ is $J^{pc} = 0^{-+}$
- > Anonlmoly line shape of X(1835) is observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ decay(with two hypotheses)
 - ✓ One broad state with strong coupling to $p\overline{p}$ (flatte model)
 - \checkmark One narrow state below to the $p\overline{p}$ mass threshold interfering with X(1835)

> Connection between X(1835) and $X(p\overline{p})$, support the existence of a $p\overline{p}$ molecule-like state or bound state

The structure near $p\bar{p}$ threshold

Study the nature of X(1835).

According to angular distribution, the J^{pc} around 1.4 and 1.8 tends to be 0⁻⁺

> $J / \psi \rightarrow \gamma X$, $X \rightarrow \gamma V (V = \omega, \phi)$: flavor filter process. $\Rightarrow X(1835)$ and $\eta(1475)$ have sizeable $s\bar{s}$ component,

- > The comparison of the production rates between $J/\psi \rightarrow \omega X(1835)$ and $J/\psi \rightarrow \gamma X(1835)$ could get information on the $q\bar{q}$ or gluon component of X(1835) Phys. Rev. D74 (2006) 034019; Eur. Phys. J. A 28, 351–360 (2006)
- → No significant X(1835) is observed. B($J/\psi \rightarrow \omega X(1835) \rightarrow \omega \pi^+ \pi^- \eta'$)<6.2×10⁻⁵ at 90% C.L.

Strangeonia spectrum

Fig. 1. The strangeonium family.

- Study of the strangeonium mesons of particular interest
 - Bridge between light u, d quark and heavy c, b quark
 - Helps to identify the exotics
- Strangeonium spectroscopy is not well understand experimentally
 - Only 7 states in the expected spectrum assigned to the observed mesons(marked with red solid lines)

Amplitude analysis of $J/\psi \rightarrow K^+K^-\pi^0$.

- $\succ K\pi^0$
- The dominant contribution is from K*(892)
- First observation of $K_2^*(1980)$ and $K_4^*(2045)$ in J/ψ decays
- $> K^+K^-$
- Two broad 1⁻⁻ structures were observed in K^+K^- mass spectrum, possibly contributed from $\omega(1650)$ and $\rho(2150)$
- Further studies on $J/\psi \to K_s K^- \pi^+$ and $J/\psi \to K^+ K^- \eta$ are needed

Amplitude analysis of $\psi' \to K^+ K^- \eta$

Bosonanco	This v	work	PDG [23]			
Resonance	M (MeV/ c^2)	$\Gamma ~({\rm MeV})$	${ m M}~({ m MeV}/c^2)$	$\Gamma ~({ m MeV})$		
$\phi(1680)$	1680^{+12+21}_{-13-21}	185^{+30+25}_{-26-47}	1680 ± 20	150 ± 50		
X(1750)	1784^{+12+0}	106^{+22+8}	$(1720 \pm 20)_{ ho(1700)}$	$(250 \pm 100)_{\rho(1700)}$		
A (1100)	-12-27	100_{-19-36}	$(1753.5 \pm 1.5 \pm 2.3)_{X(1750)}$ [15]	$(122.2 \pm 6.2 \pm 8.0)_{X(1750)}$ [15]		
o(2150)	2255^{+17+50}	$460^{+54+160}$	$(2153 \pm 27)_{\rho(2150)}$ [31]	$(389 \pm 79)_{\rho(2150)}$ [31]		
<i>p</i> (2100)	2200-18-41	100_{-48}_{-90}	$(2175 \pm 15)_{\phi(2170)}$	$(61 \pm 18)_{\phi(2170)}$		
$ \rho_3(2250) $	2248^{+17+59}_{-17-5}	$185^{+31+17}_{-26-103}$	2232 [<u>33</u>]	$220 \ [\underline{33}]$		
$K_2^*(1980)$	2046^{+17+67}_{-16-15}	408^{+38+72}_{-34-44}	$1973\pm8\pm25$	$373 \pm 33 \pm 60$		
$K_3^*(1780)$	1813^{+15+65}_{-15-16}	191^{+43+3}_{-37-81}	1776 ± 6	159 ± 21		

• The discrepancy of the $\phi(1680)$ in its production

φ(1680) (e⁺e⁻ annihilation)
X(1750) (photoproduction) reported by FOCUS (Phys. Lett. B 545, 50)

- The simultaneous observation of the X(1750) and ϕ (1680) may explain the previous discrepancy in ϕ (1680) decays.
- $\rho(2150)/\phi(2170)$ is also observed
 - isospin is undetermined
 - combined analysis with other channels is needed

Summary

Glueball

- The BR of a $f_0(1710)$ is one order of magnitude higher than that of $f_0(1500)$
 - $f_0(1710)$ has more gluonic component than $f_0(1500)$
- X(2370) was observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, $\gamma K \overline{K} \eta'$ and no signal in $J/\psi \rightarrow \gamma \eta \eta \eta'$

Structure near $p\bar{p}$ threshold

- X(1835) observed in $J/\psi \rightarrow \gamma \gamma \phi$
 - have sizeable $s\overline{s}$ component
- No X(1835) signal in $J/\psi \to \omega \pi^+ \pi^- \eta'$

Strangeonium

- Two 1⁻⁻ structures, possibly $\omega(1650)$ and $\rho(2150)$, observed in $J/\psi \rightarrow K^+K^-\pi^0$
- X(1750) and $\phi(1680)$, $\rho(2150)/\phi(2170)$ have been observed in $\psi(3686) \rightarrow K^+K^-\eta$.
- BESIII collected 10 billions of J/ψ from 2019 and will continue to run for ~ 10 more years. Data with unprecedented statistical accuracy provides great opportunities to map out light meson spectroscopy and study QCD exotics

2021/9/5

TABLE I. Mass, width, $\mathcal{B}(J/\psi \to \gamma X \to \gamma \phi \phi)$ (B.F.) and significance (Sig.) of each component in the baseline solution. The first errors are statistical and the second ones are systematic.

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	B.F.($\times 10^{-4}$)	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+21}_{-11}$	$185^{+12}_{-14}{}^{+43}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	28σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+75}_{-26}$	$250^{+36+181}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	22σ
X(2500)	$2470^{+15+101}_{-19-23}$	$230^{+64}_{-35}{}^{+56}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2101	224	$(0.43\pm0.04^{+0.24}_{-0.03})$	24σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.14^{+0.72}_{-0.73})$	11σ
0^{-+} PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

TABLE I. Fit results of using Flatté formula. The first errors are statistical errors, the second errors are systematic errors; the branching ratio is the product of $\mathcal{B}(J/\psi \to \gamma X)$ and $\mathcal{B}(X \to \eta' \pi^+ \pi^-)$.

The state around 1.85 Ge	eV/c^2
${\cal M}~({ m MeV}/c^2)$	$1638.0 \pm 121.9^{+127.8}_{-254.3}$
$g_0^2 \; (({ m GeV}/c^2)^2)$	$93.7 \pm 35.4^{+47.6}_{-43.9}$
$g_{par{p}}^2/g_0^2$	$2.31 \pm 0.37^{+0.83}_{-0.60}$
$M_{\rm pole}~({ m MeV}/c^2)$	$1909.5 \pm 15.9^{+9.4}_{-27.5}$
$\Gamma_{\rm pole} \ ({\rm MeV}/c^2)$	$273.5 \pm 21.4^{+6.1}_{-64.0}$
Branching Ratio	$(3.93 \pm 0.38^{+0.31}_{-0.84}) \times 10^{-4}$

TABLE II. Fit results using a coherent sum of two Breit-Wigner amplitudes. The first errors are statistical errors, the second errors are systematic errors; the branching ratio is the product of $\mathcal{B}(J/\psi \to \gamma X)$ and $\mathcal{B}(X \to \eta' \pi^+ \pi^-)$.

X(1835)	
Mass (MeV/c^2)	$1825.3 \pm 2.4^{+17.3}_{-2.4}$
Width (MeV/c^2)	$245.2 \pm 13.1^{+4.6}_{-9.6}$
B.R. (constructive interference)	$(3.01 \pm 0.17^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72 \pm 0.21^{+0.18}_{-0.35}) \times 10^{-4}$
X(1870)	
Mass (MeV/c^2)	$1870.2 \pm 2.2^{+2.3}_{-0.7}$
Width (MeV/c^2)	$13.0 \pm 6.1^{+2.1}_{-3.8}$
B.R. (constructive interference)	$(2.03 \pm 0.12^{+0.43}_{-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57 \pm 0.09^{+0.49}_{-0.86}) \times 10^{-5}$

TABLE II. List of components for solution II. For the reported states in the $K\pi$ channel $[K^*(892)^{\pm}, K_2^*(1430)^{\pm}, K_2^*(1980)^{\pm}$ and $K_4^*(2045)^{\pm}]$ and the reported signals in the K^+K^- channel $(J^{PC} = 1^{--}$ signals with masses around 1650 and 2050 MeV/ c^2) the first uncertainty is statistical and the second is systematic. In the $K\pi$ channel the decay fraction is given for both charged conjugated modes (b) and for the contribution of one charged mode $[b^{+(-)}]$, so that their interference can be determined. As the $K^*(1410)^{\pm}, K^*(1680)^{\pm}$ and $K_3^*(1780)^{\pm}$ contributions are not reliably identified (see the main text), their masses and widths are fixed (marked with *) and only statistical uncertainties are given for their decay fractions.

			$K^{\pm}\pi^0$ channels			
J^{PC}	PDG	$M ({\rm MeV}/c^2)$	$\Gamma ({\rm MeV}/c^2)$	b (%)	$b^{+(-)}$ (%)	ΔNLL
1-	$K^*(892)^{\pm}$	$893.6 \pm 0.1^{+0.2}_{-0.3}$	$46.7 \pm 0.2^{+0.1}_{-0.2}$	$93.4 \pm 0.4^{+1.8}_{-5.8}$	$42.5\pm0.1^{+0.5}_{-1.7}$	
1-	$K^{*}(1410)^{\pm}$	1380*	176*	0.26 ± 0.04	0.11 ± 0.02	80
1-	$K^{*}(1680)^{\pm}$	1677*	205*	0.20 ± 0.03	0.08 ± 0.01	56
2+	$K_{2}^{*}(1430)^{\pm}$	$1432.7 \pm 0.7^{+2.2}_{-2.3}$	$102.5 \pm 1.6^{+3.1}_{-2.8}$	$9.4\pm0.1^{+0.8}_{-0.5}$	$4.2\pm0.1^{+0.3}_{-0.2}$	
2^{+}	$K_2^*(1980)^{\pm}$	$1868 \pm 8^{+40}_{-57}$	$272 \pm 24^{+50}_{-15}$	$0.38 \pm 0.04^{+0.22}_{-0.05}$	$0.15 \pm 0.02^{+0.08}_{-0.02}$	192
3-	$K_{3}^{*}(1780)^{\pm}$	1781*	203*	0.16 ± 0.02	0.07 ± 0.01	105
4+	$K_4^*(2045)^{\pm}$	$2090 \pm 9^{+11}_{-29}$	$201 \pm 19^{+57}_{-17}$	$0.21 \pm 0.02^{+0.10}_{-0.05}$	$0.09 \pm 0.01^{+0.04}_{-0.02}$	212
3-	Nonresonant			~1.5%	~0.6%	629
			K^+K^- channel			
J^{PC}	PDG $M (MeV/c^2)$		$\Gamma (MeV/c^2)$		b (%)	$\Delta \ln L$
1		$1651 \pm 3^{+16}_{-6}$	$194 \pm$	8 ⁺¹⁵	$1.83 \pm 0.11^{+0.19}_{-0.17}$	796
1		$2039\pm8^{+36}_{-18}$	196 ±	23^{+25}_{-27} 0	$0.23 \pm 0.04^{+0.07}_{-0.06}$	102