Charmonium Decays at BESIII

Houbing Jiang (Shandong University) on behalf of BESIII Collaboration (PANIC 2021)

2021/9/8

Charmonium Spectroscopy

- Charmonium states locate in the transition region between perturbative QCD and nonperturbative QCD;
- The charmonium spectroscopy allows precision tests of QCD and inspired QCD models, providing a unique and important perspective on the dynamics of strong force physics;
- The spectrum of charmonium states with $M < 2m_D$ has been well-established for several decades;
- High mass region: Many excited states not found Many exotic states are observed;

Charmonium Spectroscopy at BESIII

• Data for charmonium spectroscopy: $10B-J/\psi$, $448M-\psi(3686) \rightarrow 3B-\psi(3686)$, $\sim 22fb^{-1}XYZ$ above 3.8GeV, scan data around $\psi(3686)$;

- The goal of BESIII studies of charmonium states: investigate the spectroscopy, transitions, and find new decay channels;
- The light charmonium states are primarily studied using large and clean samples of $\psi(3686)$ or J/ψ decays, the excited charmonium states are produced using higher-energy collisions;

Houbing Jiang (SDU)

PANIC 2021

Recent results at BESIII

- Charmonium → $B\overline{B}$... $> \psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.;$ $> \chi_{cJ}(J = 0,1,2) \rightarrow \Lambda \overline{\Lambda} / nK_s^0 \Lambda + c.c.;$ $> \psi(3686), J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-;$
- Charmonium $\rightarrow Meson +$ $\gg \psi(3686) \rightarrow K_s^0 + \text{anything};$ $\gg \eta_c \rightarrow \eta \eta \eta';$
- Charmonium $\rightarrow X$ + Charmonium
 - $\succ \psi(3823)$ decays: Several new decay modes are searched;
 - $\succ \psi(4040)/\psi(4160)$ decays: Possible $\psi(4040)/\psi(4160) \rightarrow \gamma \chi_{c1,c2}$ in $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$;

 $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.$

Data: $4.481 \times 10^8 \psi(3686)$

• The BF of isospin violating decay $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c. c.$ is measured to be:

B(ψ (3686) → $\overline{\Sigma}^0 \Lambda + c.c.$) = 1.60 ± 0.31 ± 0.13 ± 0.58 × 10⁻⁶,

Interference between $\psi(3686)$ and continuum process

• **CLEO-c:** PRD 96, 092004 (2017)

B(ψ (3686) → $\bar{\Sigma}^0$ Λ + c.c.) = 12.3 ± 2.4 × 10⁻⁶,

- Theoretical prediction: Int. J. Mod.Phys. A 30, 1550148 $B(\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.) = 4.0 \pm 2.3 \times 10^{-6},$
- Smaller than CLEO-c result, consistent with Theoretical prediction;

PRD 103,112004(2021)

 $\chi_{cJ} \rightarrow n K_s^0 \Lambda + c.c$

arXiv:2106.13442

Data: $4.481 \times 10^8 \psi(3686)$

• The decay $\chi_{cJ} \rightarrow nK_s^0 \Lambda + c.c$ are observed for the first time;

• The BFs of $\chi_{cJ} \rightarrow nK_s^0 \Lambda + c.c$ are measured, the ratios $B(\chi_{cJ} \rightarrow pK^-\Lambda + c.c)/B(\chi_{cJ} \rightarrow nK_s^0\Lambda + c.c)$ are measured; No obvious isospin violation is observed

Mode	$N_{1,J}$	$\epsilon_J~(\%)$	BF (10^{-4})	$\operatorname{BF}(pK^{-}\overline{\Lambda}) / \operatorname{BF}(nK_{S}^{0}\overline{\Lambda})$
χ_{c0}	1288 ± 50	9.95	$6.67 \pm 0.26 \pm 0.41$	$(1.98 \pm 0.09 \pm 0.14)$
χ_{c1}	410 ± 30	12.44	$1.71 \pm 0.12 \pm 0.12$	$(2.64 \pm 0.23 \pm 0.20)$
χ_{c2}	900 ± 41	13.03	$3.66 \pm 0.17 \pm 0.23$	$(2.29 \pm 0.13 \pm 0.16)$

Houbing Jiang (SDU)

 $\chi_{\mathrm{c}J}\to\Lambda\overline{\Lambda}$

PRD 103,112004(2021)

Data: $4.481 \times 10^8 \psi(3686)$

- The BF of decay $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda}$ via $\psi(3686) \rightarrow \gamma \chi_{cJ}$ are measured;
- The BFs are consistent with PDG values;
- Not consistent with the theoretical predictions, this should be understood further; Eur. Phys. J. A 23, 129, J. Phys. G 38, 035007, Eur. Phys. J. C 14, 643 (e.g. \chi_{c0} ~1.19~1.51×10⁻⁴);

Uncertainties from $\psi(3686) \rightarrow \gamma \chi_{cJ}$

Mode	N	E	$\mathcal{B}\left(\psi(3686) \to \gamma \chi_{cJ}\right)$	$\mathcal{B}\left(\chi_{cJ} ightarrow\Lambdaar{\Lambda}$	$)(\times 10^{-4})$
Mode	1 V χ_{cJ}	C	$ imes \mathcal{B}\left(\chi_{cJ} \to \Lambda \bar{\Lambda} ight)\left(10^{-5} ight)$	This work	PDG
χ_{c0}	1486 ± 42	22.80%	$3.56 \pm 0.10 \pm 0.10$	$3.64 \pm 0.10 \pm 0.10 \pm 0.07$	3.27 ± 0.24
χ_{c1}	528 ± 24	22.61%	$1.28 \pm 0.06 \pm 0.06$	$1.31 \pm 0.06 \pm 0.06 \pm 0.03$	1.14 ± 0.11
χ_{c2}	670 ± 27	20.16%	$1.82 \pm 0.08 \pm 0.17$	$1.91 \pm 0.08 \pm 0.17 \pm 0.04$	1.84 ± 0.15
Hou	Ibing Jiang (SDU)		PANIC 2021		7

 $\psi(3686) \text{ and } J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-$

arXiv:2107.02977

Data: $4.481 \times 10^8 \psi(3686)$ and $1.31 \times 10^9 J/\psi$

• The BF of decay $\psi(3686)$ and $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-$ are measured to be:

violate the "12% rule"

• The BFs are in agreement with previous measurement (BES and CLEO), with improved precision; Phys. Rev. D 78, 092005, Phys. Rev. D 96, 092004

Recent results at BESIII

- Charmonium $\rightarrow B\overline{B}...$ $\geq \psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.;$ $\geq \chi_{cJ}(J = 0,1,2) \rightarrow \Lambda\overline{\Lambda} / nK_s^0 \Lambda + c.c.;$ $\geq \psi(3686), J/\psi \rightarrow \Sigma^+\overline{\Sigma}^-;$
- Charmonium \rightarrow Meson + • $\psi(3686) \rightarrow K_s^0$ +anything; • $\eta_c \rightarrow \eta \eta \eta'$;
- Charmonium $\rightarrow X$ + Charmonium
 - $\succ \psi(3823)$ decays: Several new decay modes are searched;
 - $\succ \psi(4040)/\psi(4160)$ decays: Possible $\psi(4040)/\psi(4160) \rightarrow \gamma \chi_{c1,c2}$ in $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$;

$\psi(3686) \rightarrow K_s^0 + anything$

arXiv:2106.08766 Accepted by PLB

Data: $\mathcal{L} = 5.9 f b^{-1}$, $\sqrt{s} = 3.640 - 3.701 \text{ GeV}$

- Measurements of the BFs of inclusive $\psi(3686)$ decays can guide the search for new exclusive decay modes.
- The BF of $\psi(3686) \rightarrow K_s^0$ + anything is measured for the first time by fitting the observed inclusive K_s^0 cross sections around $\psi(3686)$ energy region:

 $\mathcal{B}(\psi(3686) \to K_S^0 X) = (16.04 \pm 0.29 \pm 0.90)\%,$

- The sum of all the BFs of $\psi(3686)$ decays to exclusive K_s^0 final states is ~ 5.95% as reported in the PDG;(Much lower than the current measurement)
- This suggests that there are many undiscovered exclusive channels for $\psi(3686)$ decay to final states containing K_s^0 .

 $\eta_c \rightarrow \eta \eta \eta'$

PRD 103,012009(2021)

Data: $1.31 \times 10^9 J/\psi$

• The decay $\eta_c \rightarrow \eta \eta \eta'$ are observed for the first time, $B(J/\psi \rightarrow \gamma \eta_c, \eta_c \rightarrow \eta \eta \eta') = 4.86 \pm 0.62 \pm 0.45 \times 10^{-5},$

which is compatible with the theoretical prediction; Eur. Phys. J. A 54, 139 (2018)

Recent results at **BESIII**

- Charmonium $\rightarrow B\overline{B}...$ $\gg \psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.;$ $\gg \chi_{cJ}(J = 0,1,2) \rightarrow \Lambda \overline{\Lambda} / nK_s^0 \Lambda + c.c.;$ $\gg \psi(3686), J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-;$
- Charmonium $\rightarrow Meson +$ $\gg \psi(3686) \rightarrow K_s^0 + \text{anything};$ $\gg \eta_c \rightarrow \eta \eta \eta';$
- Charmonium $\rightarrow X$ + Charmonium
 - $\succ \psi(3823)$ decays: Several new decay modes are searched;
 - $\succ \psi(4040)/\psi(4160) \text{ decays: Possible } \psi(4040)/\psi(4160) \rightarrow \gamma \chi_{c1,c2} \text{ in } e^+e^- \rightarrow \gamma \chi_{c0,c1,c2};$

Search for new decay modes of $\psi_2(3823)$

Data: $\mathcal{L} = 19 f b^{-1}$, $\sqrt{s} = 4.1 - 4.7 \text{ GeV}$

• The new decay modes of $\psi_2(3823)$ are searched;

Channel	$N^{\psi_2(3823)}$	$\frac{\mathcal{B}(\psi_2(3823) \to \cdots)}{\mathcal{B}(\psi_2(3823) \to \gamma \chi_{c1})}$
$\gamma \chi_{c1}$	63.1 ± 8.5	
$\gamma \chi_{c2}$	$8.8^{+4.3}_{-3.4}$	$0.28^{+0.14}_{-0.11}\pm 0.02$
$\pi^+\pi^- J/\psi$	<21.0	< 0.06
$\pi^0\pi^0 J/\psi$	<10.0	< 0.11
$\eta J/\psi$	<9.8	< 0.14
$\pi^0 J/\psi$	<5.6	< 0.03
$\gamma \chi_{c0}$	<6.3	< 0.24

consistent with theoretical predictions PRD 55, 4001 PRL89, 162002

- $\psi_2(3823) \rightarrow \gamma \chi_{c1}$: confirm the previous observation at BESIII, with 11.8σ;
- No significant $\psi_2(3823)$ signals are observed for other channels;
- Evidence for $e^+e^- \rightarrow \pi^0\pi^0 \psi_2(3823)$, 4.3 σ ;

PRD103, L091102 (2021)

 $e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$

arXiv: 2107.03604

Data: $\mathcal{L} = 19.3 f b^{-1}$, $\sqrt{s} = 3.77 - 4.6 \text{ GeV}$

- The processes of $e^+e^- \rightarrow \gamma \chi_{c1,c2}$ are observed for the first time @ 4.178 GeV (7.6 σ and 6.0 σ);
- Components in the cross section fit:
 - $→ e^+e^- → γ \chi_{c1}: ψ(3686), ψ(3770), ψ(4040), ψ(4160) +$ continuum contribution;

$$\begin{split} \psi(4040) \ (3.3\sigma), \ \psi(4160) \ (3.7\sigma), \ \text{continuum} \ (6.7\sigma); \\ & \flat \ e^+e^- \to \gamma \chi_{c2}: \ \psi(3686) \ , \ \psi(3770), \ \psi(4040), \ \psi(4160) \ + \\ & Y(4360); \end{split}$$

 $\psi(4040) (2.0\sigma), \psi(4160) (4.6\sigma), Y(4360) (5.8\sigma);$

• The measured cross section are consistent with potential model (3S/2D) predictions, except for B[$\psi(4160) \rightarrow \gamma \chi_{c2}$] (~10⁻⁴) is much larger than potential model predictions(~10⁻⁷);

$$e^+e^- \rightarrow \gamma \chi_{c0,c1,c2}$$

arXiv: 2107.03604

Data: $\mathcal{L} = 15 f b^{-1}$, $\sqrt{s} = 4.0 - 4.6 \text{ GeV}$

- $\chi_{c0} \to K^+ K^- \pi^+ \pi^- / 2(\pi^+ \pi^-) / K^+ K^-;$
- No obvious signal of $e^+e^- \rightarrow \gamma \chi_{c0}$;
- The UL is consistent with potential model expectations;

Summary

- Many progress in the study of charmonium decays in a recent year at BESIII;
- With 10 B J/ψ and 3B ψ (3686), more precise measurements are coming!
- In this talk, we present the new decay channels or new measurements of $(\eta_c, J/\psi, \psi(3686), \chi_{cJ})$, and new transitions $(\psi_2(3823), \psi(4040), \psi(4160))$;

Thanks for your attention!!!

Back Up

BEPCII/BESIII

- Double rings;
- Ecm= 2.0-4.6 GeV (2.0-4.9 GeV since 2019);
- Energy spread: $\Delta E \approx 5 \times 10^{-4}$ GeV;
- Design luminosity @Ecm= 3.77
 GeV: ~1× 10³³ cm⁻²s⁻¹
 (reached 2016);
- 2009~ today: BESIII physics runs;

Chin.Phys.C 44 (2020) 4, 040001

 $\begin{array}{l} \mbox{Main Drift Chamber} \\ \sigma_p/p < 0.5\% \ (@1 GeV) \ (1T) \\ \sigma_{xy} \sim 120 \ \mu m \\ dE/dx \sim 6\% \end{array}$

Electromagnetic Calorimeter $\sigma_E/E < 2.5\%$ (@1GeV) $\sigma_{xy} \sim 6mm$ (@1GeV)

 $\frac{\text{Muon Counter}}{\sigma_{\text{spatial}} < 2cm}$