

Recent results on charmed baryon at Belle

Suxian Li (Fudan University) On behalf of Belle Collaboration

Particles and Nuclei International Conference September 8, 2021

Belle Experiment and data samples

- Masses and widths of $\Sigma_c(2455/2520)^+$
- Branching fraction of $\Lambda_c^+ \rightarrow \eta \Lambda \pi^+$
- Radiative decays of $\Xi_c(2970/2815)$
- Evidence for the decay $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\overline{K}\Xi)^-$
- Spin and parity of $\Xi_c(2970)^+$

Masses and widths of $\Sigma_c(2455/2520)^+$

PRD (accepted) arXiv:2107.05615

Motivation:

• Masses and widths of $\Sigma_c^{0/++}$ are well studied via $\Sigma_c^{0/++} \rightarrow \Lambda_c^+ \pi^{-/+}$ experimentally.

[PRD 89, 091102 (2014)]

• Masses of Σ_c^+ is measured by CLEO II. Only limits are set on intrinsic widths.

[PRL 86, 1167 (2001)]

- Mass measurements of the isotriplets $(\Sigma_c^0/\Sigma_c^+/\Sigma_c^{++})$ allow tests of isospin mass splitting models.
- Most mass models predict: $m(\Sigma_c^+) < m(\Sigma_c^0/\Sigma_c^{++})$.

[L. Chan, PRD 21, 204 (1985); K. Varga, PRD 59, 014012 (1999); B. Silvestre-Brac, JPG 29, 2686 (2003)]

• Natural width models predict: $\Gamma(\Sigma_c^+) > \Gamma(\Sigma_c^0 / \Sigma_c^{++})$.

[H.-Y. Cheng and C.-K. Chua, PRD 92, 074014 (2015)]

Reconstructed decay: $\Sigma_c(2455/2520)^+ \rightarrow \pi^0 \Lambda_c^+ \rightarrow \pi^0 (pK^-\pi^+)$

• First measurement of widths of $\Sigma_c(2455/2520)^+$.

• Much precise measurement of masses of $\Sigma_c(2455/2520)^+$.

Branching fraction of $\Lambda_c^+ \rightarrow \eta \Lambda \pi^+$

PRD 103, 052005 (2021)

Motivation:

• The $\Lambda_c^+ \rightarrow \eta \Lambda \pi^+$ decay is an ideal decay to study the $\Lambda(1670)$ and $a_0(980)$.

J. J. Xie and L. S. Geng, EPJC 76, 496 (2016).

- Two different models to explain the structure of the $\Lambda(1670)$:
 - > $\Lambda(1670)$ is the SU(3) octet partner of the N(1535);
 - R. Koniuk and N. Isgur, PRD 21, 1868 (1980)
 - > $\Lambda(1670)$ is as a KE bound state.
 - E. Oset, A. Ramos, and C. Bennhold, PLB 527, 99 (2002).
- Few experimental efforts to confirm the structure of the $\Lambda(1670)$.
- In this work, we investigate the $\Lambda(1670)$ in the resonant substructure of the $\Lambda_c^+ \rightarrow \eta \Lambda \pi^+$ decay.

 $36.1 \pm 2.4 \pm 4.8$

 $38.1 \pm 1.5 \pm 2.1$

Decay modes	Extracted yields	Efficiency-corrected yields $[\times 10^3]$				
$\frac{\Lambda_c^+ \to \Lambda(1670)\pi^+}{\Lambda_c^+ \to \eta \Sigma(1385)^+}$	$9760 \pm 519 \\ 29372 \pm 875$	$\begin{array}{c} 140\pm7\\ 423\pm13 \end{array}$				
Decay modes	$\mathcal{B}(\text{Decay mode})/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$					
$ \begin{array}{c} \Lambda_c^+ \to \Lambda(1670)\pi^+; \\ \Lambda(1670) \to \eta\Lambda \\ \Lambda_c^+ \to \eta\Sigma(1385)^+ \end{array} \end{array} $	(5.54 ± 0) 0.192 =	$(5.54 \pm 0.29 \pm 0.73) \times 10^{-2}$ $0.192 \pm 0.006 \pm 0.016$				
Resonances	Mass $[MeV/c^2]$	Width [MeV]				

 $1674.3 \pm 0.8 \pm 4.9$

 $1384.8 \pm 0.3 \pm 1.4$

 $\Lambda(1670)$

 $\Sigma(1385)^{+}$

First observation:

• $\Lambda_c^+ \to \eta \Sigma^0 \pi^+$ and $\Lambda_c^+ \to \Lambda(1670)\pi^+$

Much improved precision:

- $B(\Lambda_c^+ \to \eta \Lambda \pi^+)$ and $B(\Lambda_c^+ \to \eta \Sigma(1385)^+)$
- Masses and widths of $\Lambda(1670)$ and $\Sigma(1385)^+$

Radiative decays of $\Xi_c(2790/2815)$

Motivation:

PRD 102, 071103 (2020)

- A recent study reported measurement of the masses and widths of the $\Xi_c(2790)^{+/0}$ and $\Xi_c(2815)^{+/0}$ states. <u>PRD 94, 052011 (2016)</u>
- They can also decay via the π^0 decays that are harder to see, and the $\Xi_c(2815)$ has been seen in $\Xi'_c \pi$. <u>PRD 94, 052011 (2016)</u>
- ➢ But what about the radiative decays?

 $\Xi_{c}(2790)^{+/0} \rightarrow \Xi_{c}^{+/0}\gamma$ $\Xi_{c}(2815)^{+/0} \rightarrow \Xi_{c}^{+/0}\gamma$

- The theoretical predictions show: (K-L. Wang, Y-X. Yao, X-H. Zhong, and Q. Zhao, <u>PRD</u> <u>96, 116016 (2017)</u>)
 - Neutral states (Γ ~200 keV) would be seen
 - Charged states (Γ < 10 keV) would not be seen

Basic technique

[1.] Reconstruct the ground states $\Xi_c^{0/+}$

- Ξ_c^0 : with ten decay modes.
- Ξ_c^+ : with seven decay modes.

[2.] Reconstruct the excited Ξ_c from $\Xi_c^{+/0} \gamma$ $E_{\gamma} > 0.55 \text{ GeV}$

- [3.] Fit the $M(\Xi_c^{+/0}\gamma)$ in the region of the $\Xi_c(2790)$ and $\Xi_c(2815)$.
- [4.] Divide by the yield in the known decay modes:

$$\begin{split} &\Xi_{\rm c}(2790)^0 \to \Xi_c^{\prime +} \pi^- \to (\Xi_c^+ \gamma) \pi^- \, ; \\ &\Xi_{\rm c}(2815)^0 \to \Xi_c(2645)^+ \pi^- \to (\Xi_c^0 \pi^+) \pi^- \end{split}$$

FIG. 1. Pull mass distribution for the Ξ_c^0 (upper data points), and Ξ_c^+ (lower data points) candidates.

FIG. 3. The signals used as normalization modes in the analysis.

Result:

980 fb⁻¹

- > **First observation** of the radiative decays of excited Ξ_c .
- Give the ratios of branching fractions.
- Confirm the theoretical prediction. (K-L. Wang, Y-X. Yao, X-H. Zhong, and Q. Zhao, <u>PRD 96</u>, <u>116016 (2017)</u>)

$\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\overline{\mathrm{K}}\Xi)^-$

PRD (accepted) <u>arXiv:2106.00892</u>

Motivation:

• a new excited Ω^- resonance was seen, with $M = (2012 \pm 0.7 \pm 0.6) \text{ MeV}/c^2$ and $\Gamma = (6.4^{+2.5}_{-2.0} \pm 1.6) \text{ MeV}/c^2$.

[PRL 121, 052003 (2018)]

• $\Omega(2012)^-$ is interpreted as a $\overline{K}\Xi(1530)$ hadronic molecule.

[Y. H. Lin and B. S. Zou, PRD 98, 056013 (2018); M. P. Valderrama, PRD 98, 054009 (2018); R. Pavao and E. Oset, EPJC 78, 857 (2018)]

• No $\Omega(2012)^-$ signal is observed via $\Omega(2012)^- \rightarrow (\overline{K}\Xi(1530))^- \rightarrow (\overline{K}\pi\Xi)^-$ by Belle

[PRD 100, 032006 (2019)]

• Clearly $\Omega(2012)^-$ peak in the $M[(\overline{K}\Xi)^-]$ of the $\Omega_c^0 \to \pi^+(\overline{K}\Xi)^-$ is predicted.

[C. H. Zeng, J. X. Lu, E. Wang, J. J. Xie, and L. S. Geng, PRD 102, 076009 (2020)]

2D simultaneous fit to $M(\overline{K}\Sigma)$ and $M(\pi\Omega(2012))$

980 fb⁻¹

$$\frac{B(\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+(\overline{K}\Xi)^-)}{B(\Omega_c^0 \to \pi^+\Omega^-)} = 0.220 \pm 0.059 \pm 0.035$$

$$\frac{B(\Omega_c^0 \to \pi^+\Omega(2012)^- \to \pi^+K^-\Xi^0)}{B(\Omega_c^0 \to \pi^+K^-\Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\%$$

$$\frac{B(\Omega_c^0 \to \pi^+\Omega(2012)^- \to \pi^+K_S^0\Xi^-)}{B(\Omega_c^0 \to \pi^+K_S^0\Xi^-)} = (5.5 \pm 2.8 \pm 0.7)\%$$

Spin and parity of $\Xi_c(2970)^+$

Motivation:

PRD 103, L111101 (2021)

Ξ_c(2970) States

 Mass and width were measured precisely via:

 $\Xi_c(2970) \rightarrow \Xi_c(2645)\pi \rightarrow \Xi_c\pi\pi$

● The Ξ_c(2970) is also observed from the decay:

 $\Xi_{\rm c}(2970) \rightarrow \Xi_{\rm c}'\pi \rightarrow \Xi_{\rm c}\gamma\pi$

PRD 94, 052011 (2016)

- Spin and parity of the $\Xi_c(2970)$ is <u>not determined</u> yet.
- There is not even a presumed spin-parity.

Principle of Determination

- Spin
- For the decay $\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi_1^+ \to \Xi_c^+ \pi_1^- \pi_2^+$,
- Two decay angular distribution are studied.
 - $\cos\theta_h$: Helicity angle of $\Xi_c(2970)^+$
 - $\cos\theta_c$: Helicity angle of $\Xi_c(2645)^0$

cos_{0h}

Ξ_c(2645)⁰

 θ_h : angle bet.

- Parity
 - Ratio of branching fractions is studied.

Ec(2970)

• Compared with the prediction from Heavy Quark Spin Symmetry (HQSS)

π+

$$R = \frac{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi^+)}{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c'^0 \pi^+)}$$

Determination of the Spin

Full Belle data sample

- Divide the data into 10 equal bins for $cos\theta_h$ and $cos\theta_c$.
- Fit $M(\Xi_c \pi \pi)$ in each bin.
- Fit the angular distributions with the expected decay angular distributions $W_{1/2}, W_{3/2}, W_{5/2}$

- Best fit is the spin 1/2 hypothesis
- Exclusion level of the spin 3/2 (5/2) hypothesis is as small as 0.8σ (0.5 σ).
- Therefore, the result is inconclusive.

Determination of the Spin

Full Belle data sample

• To draw a more decisive conclusion, we fit angular distributions of $cos\theta_c$ with the expected angular distribution

 $W(\theta_c) = 3/2[\rho_{33}^* \sin^2 \theta_c + \rho_{11}^* (1/3 + \cos^2 \theta_c)], \rho_{33}^* + \rho_{11}^* = 1/2$

- > This result is most consistent with the spin $\frac{1}{2}$ hypothesis.
- → The $1/2^{\pm}$ scenario is preferred over $3/2^{-}(5/2^{+})$ by 5.5σ (4.8 σ).
- \succ Excludes the Ξ_c^* spin of 1/2 in which the distribution should be flat.

Determination of the Parity

The branching ratio R is sensitive to the parity.

$$R = \frac{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi^+)}{\mathcal{B}(\Xi_c(2970)^+ \to \Xi_c^{\prime 0} \pi^+)}$$

Fit the M($\Xi_c^+\pi^-\pi^+$) and M($\Xi_c^{\prime 0}\pi^+$) for two mode.

Branching ratio $R = 1.67 \pm 0.29^{+0.15}_{-0.09} \pm 0.17$ (IS), where IS is Isospin symmetry.

Heavy-quark spin symmetry	Parity	+	+	_	_
(HQSS) prediction	Brown-muck spin s_ℓ	0	1	0	1
	R	1.06	0.26	0	$\ll 1$

Our result favors a positive-parity assignment with sl = 0

Summary

- Although Belle has stopped data taking for ~10 years, we are still producing exciting results.
- We report first measurement of $\Gamma(\Sigma_c(2455/2520)^+)$ and more precise M($\Sigma_c(2455/2520)^+$).
- We report BF measurement of $\Lambda_c^+ \rightarrow \eta \Lambda \pi^+$ and first observation of $\Lambda(1670)$
- We report first observation of radiative decays of excited $\Xi_c(2970/2815)$ and give the BR
- We report evidence for the decay $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\overline{K}\Xi)^-$
- We report the spin and parity of $\Xi_c(2970)^+$
- Belle II will provide greater sensitivity and precise measurements in charmed baryon physics with 50 ab⁻¹.

Thanks for your attentions!

