Decay modes of the pseudoscalar glueball and its first excited state

Walaa I. Eshraim

22nd Particles and Nuclei International Conference (PANIC 2021), Lisbon, Portugal, September 5th , 2021

Introduction

Quantum Chromodynamics (QCD)
Symmetries of the QCD Lagrangian. if all quark massless then we have chiral symmetry

 $U(N_f)_r \times U(N_f)_l = SU(N_f)_r \times SU(N_f)_l \times U(1)_V \times U(1)_A$

- Spontaneous breaking of chiral symmetry by quark condensates.
- Explicit breaking of global chiral symmetry by quark masses and chiral anomaly.
- Effective chiral models of (QCD).

Motivation

- Decay of the pseudoscalar glueball into scalar and pseudoscalar mesons.
 Decay of the pseudoscalar glueball into excited scalar and excited pseudoscalar mesons.
- Decay of the pseudoscalar glueball into the scalar glueball.
- Decay of the first excited pseudoscalar glueball into the pseudoscalar and the scalar glueball.
- Decay of the first excited pseudoscalar glueball into the pseudoscalar charmonium state.
- Decay of the first excited pseudoscalar glueball into scalar and pseudoscalar mesons and their first excited states.

Fields of the models

• Mesons: quark-antiquark states ($q\overline{q}$)

(scalar, pseudoscalar, excited scalar and excited pseudoscalar quarkonia.)

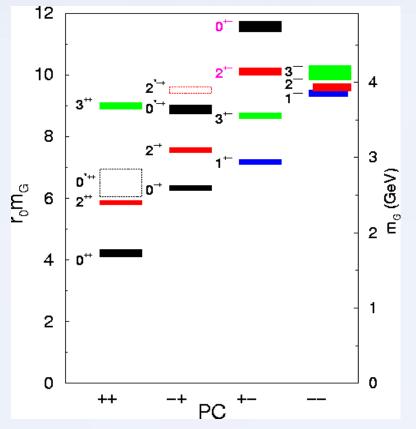
Quantum number: $J^{PC} \longrightarrow$ Charge Conjugation TotalSpin Parity

• Glueballs: Scalar, pseudoscalar, first excited pseudoscalar glueballs

Decays of the pseudoscalar glueball

A globally chirally invariant for three flavours

Interaction Lagrangian for the pseudoscalar glueball with scalar and pseudoscalar mesons


$$\mathcal{L}_{\tilde{G}}^{int} = ic_{\tilde{G}\Phi}\tilde{G}\left(\det\Phi - \det\Phi^{\dagger}\right)$$

where $c_{\tilde{G}\Phi}$ is a dimensionless coupling constant and Φ reads for three flavours, $N_f = 3$:

$$\Phi = (S^a + iP^a) t^a = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{(\sigma_N + a_0^0) + i(\eta_N + \pi^0)}{\sqrt{2}} & a_0^+ + i\pi^+ & K_S^+ + iK^+ \\ a_0^- + i\pi^- & \frac{(\sigma_N - a_0^0) + i(\eta_N - \pi^0)}{\sqrt{2}} & K_S^0 + iK^0 \\ K_S^- + iK^- & \bar{K}_S^0 + i\bar{K}^0 & \sigma_S + i\eta_S \end{pmatrix}$$

Glueballs

Lattice QCD calculation

[C. Morningstar and M. J. Peardon, AIP Conf. Proc. 688, 220 (2004)

[arXiv:nucl-th/0309068]];

The pseudoscalar glueball $\breve{G} \equiv |gg\rangle$ at the border within light and heavy

$$M_{\tilde{G}} = 2.6 \text{ GeV}, J^{PC} = 0^{-+}, I = 0.$$

The first excited pseudoscalar Glueball

$$M_{\tilde{G}} = 3.7 \text{ GeV}, J^{PC} = 0^{*-+}.$$

Two experiments related to our work:

1. PANDA experiment at FAIR facility. It will be capable to scan the mass region above 2.5 GeV.

2. BESIII experiment.

The resonance X(2370) could be a pseudoscalar glueball with a mass 2.37 GeV.

Predictions for a pseudoscalar glueball

- Predict branching ratios for decays into three pseudoscalar mesons $\widetilde{G} \to PPP$

Quantity	Case (i): $M_{\tilde{G}} = 2.6 \text{ GeV}$	Case (ii): $M_{\tilde{G}} = 2.37 \text{ GeV}$
$\Gamma_{\tilde{G} \to KK\eta} / \Gamma_{\tilde{G}}^{tot}$	0.049	0.043
$\Gamma_{\tilde{G}\to KK\eta'}/\Gamma_{\tilde{G}}^{tot}$	0.019	0.011
$\Gamma_{\tilde{G} \to \eta \eta \eta} / \Gamma_{\tilde{G}}^{tot}$	0.016	0.013
$\Gamma_{\tilde{G} \to \eta \eta \eta'} / \Gamma_{\tilde{G}}^{tot}$	0.0017	0.00082
$\frac{\Gamma_{\tilde{G} \to \eta \eta' \eta'}}{\Gamma_{\tilde{G}}^{tot}}$	0.00013	0
$ \Gamma_{\tilde{G}\to KK\pi}/\Gamma_{\tilde{G}}^{ioi} $	0.47	0.47
$\Gamma_{\tilde{G}\to\eta\pi\pi}/\Gamma_{\tilde{G}}^{tot}$	0.16	0.17
$\Gamma_{\tilde{G}\to\eta'\pi\pi}/\Gamma_{\tilde{G}}^{\tilde{t}ot}$	0.095	0.090

The decay of the pseudoscalar glueball into three pions vanishes:

$$\Gamma_{\tilde{G}\to\pi\pi\pi} = 0$$

W. I. Eshraim; S. Janowski; F. Giacosa; D. H. Rischke. Phys.Rev. D87 (2013) 054036 [arXiv: 1208.6474 [hep-ph].

Predict branching ratios for decays into a scalar and a pseudoscalar meson

DO

 $\widetilde{\alpha}$

	$G \to PS$	
Quantity	Case (i): $M_{\tilde{G}} = 2.6 \text{ GeV}$	Case (ii): $M_{\tilde{G}} = 2.37 \text{ GeV}$
$\Gamma_{\tilde{G} \to KK_S} / \Gamma_{G}^{t}$	$\left \begin{array}{c} ot \\ \tilde{g} \end{array} \right = 0.060$	0.070
$\Gamma_{\tilde{G} \to a_0 \pi} / \Gamma_{\tilde{G}}^{ta}$		0.10
	$\begin{bmatrix} 0.000026 \\ 0.000026 \end{bmatrix}$	0.000030
	$\left[\begin{array}{c} ot \\ \tilde{g} \end{array} \right] = 0.039$	0.026
	$\begin{array}{c} p_{t}^{t} \\ 0.012 \ (0.015) \end{array}$	$0.0094 \ (0.017)$
$\Gamma_{\tilde{G} \to \eta' \sigma_S} / \Gamma_{\tilde{G}}^t$	$\frac{ot}{\tilde{g}}$ 0 (0.0082)	0 (0)
whereas	Could be measured by	

 $K_s = K_0^*(1430), a_0 = a_0(1450), \sigma_N \approx f_0(1370), \sigma_S \approx f_0(1710)$

The full width of the pseudoscalar glueball is expected to be small

W. I. Eshraim; S. Janowski; F. Giacosa; D. H. Rischke. Phys.Rev. D87 (2013) 054036 [arXiv: 1208.6474 [hep-ph]; W.I. Eshraim and S. Janowski, PoS ConfinementX 118, (2012) [arXiv:1301.3345 [hep-ph]]; W.I. Eshraim and S. Janowski, J. Phys.Conf. Ser. 426, 012018 (2013) [arXiv:1211.7323 [hep-ph]].

A globally chirally invariant for three flavours

Interaction Lagrangian for the pseudoscalar glueball with (pseudo)scalar and excited (pseudo)scalar mesons

$$\mathcal{L}_{\tilde{G}\Phi\Phi_{E}}^{int} = c_{\tilde{G}\Phi\Phi_{E}} \,\tilde{G} \,\left[\left(det\Phi - det\Phi_{E}^{\dagger} \right)^{2} + \left(det\Phi^{\dagger} - det\Phi_{E} \right)^{2} \right]$$

W. I. Eshraim, [arXiv: 1902.11148 [hep-ph]] Where $c_{\check{G}\Phi\Phi E}$ is a dimensionless coupling constant and Φ_E reads for three flavours, $N_f = 3$

$$\Phi_E = (S_E^a + iP_E^a)t^a = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{(\sigma_{NE} + a_{0E}^0) + i(\eta_{NE} + \pi_E^0)}{\sqrt{2}} & a_{0E}^+ + i\pi_E^+ & K_{SE}^+ + iK_E^+ \\ a_{0E}^- + i\pi_E^- & \frac{(\sigma_{NE} - a_{0E}^0) + i(\eta_{NE} - \pi_E^0)}{\sqrt{2}} & K_{SE}^0 + iK_E^0 \\ K_{SE}^- + iK_E^- & \bar{K}_{SE}^0 + i\bar{K}_E^0 & \sigma_{SE} + i\eta_{SE} \end{pmatrix}$$

D. Parganlija and F. Giacosa, Eur.Phys.J. C77 (2017) no.7, 450 [arXiv:1612.09218 [hep-ph]].

The assignment of the excited (pseudo)scalar mesons

Model state	IJ^P	Assignment
σ_N^E	00^{+}	$f_0(1790)$
η_N^E	00-	$\eta(1295)$
η^E_S	00-	$\eta(1440)$
σ^E_S	00^{+}	Possible overlap with $f_0(2020)/f_0(2100)$ to be discussed as a model consequence
a_0^E	10^{+}	Possible overlap with $a_0(1950)$ to be discussed as a model consequence
π^{E}	10-	Possible overlap with $\pi(1300)$ to be discussed as a model consequence
$K_0^{\star E}$	$\frac{1}{2}0^{+}$	Possible overlap with $K_0^{\star}(1950)$ to be discussed as a model consequence
K^E	$\frac{1}{2}0^{-}$	Possible overlap with $K(1460)$ to be discussed as a model consequence

D. Parganlija and F. Giacosa, Eur.Phys.J. C77 (2017) no.7, 450 [arXiv:1612.09218 [hep-ph]].

Branching ratios for the two- and three-body decays of the pseudoscalar glueball

Quantity	The theoretical result [MeV]
$\frac{\Gamma_{\tilde{G} \to \eta\eta} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	0.002
$\Gamma_{\tilde{G} \to \eta \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.440
$\Gamma_{\tilde{G} \to \eta' \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.249
$\frac{\Gamma_{\tilde{G} \to \eta_{SE}\eta} / \Gamma_{\tilde{G}\Phi\Phi_E}^{tot}}{\Gamma_{Tot}^{tot}}$	0.0085
$\frac{\Gamma_{\tilde{G} \to \eta_{NE}\eta} / \Gamma_{\tilde{G}\Phi\Phi_{E}}^{tot}}{= tot}$	0.0289
$\Gamma_{\tilde{G} \to \eta_{NE} \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.2082
$\Gamma_{\tilde{G} \to \pi \pi \sigma_{SE}} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.00016
$\Gamma_{\tilde{G}\to a_0\pi\eta}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0011
$\Gamma_{\tilde{G}\to\pi\pi f_0(1370)}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0405
$\Gamma_{\tilde{G}\to\pi\pi f_0(1500)}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0209
$\Gamma_{\tilde{G}\to\pi\pi f_0(1710)}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0003
$\Gamma_{\tilde{G} \to KKf_0(1370)} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.000045

W. I. Eshraim [arXiv: 1902.11148 [hep-ph]]

Decays of the first excited pseudoscalar glueball

Interaction Lagrangain for the excited pseudoscalar glueball

with a pseudoscalar glueball and the ordinary scalar and pseudoscalar mesons

$$\mathcal{L}_{\tilde{G}\tilde{G}'}^{int} = c_{\tilde{G}\tilde{G}'}\tilde{G}\tilde{G}'\,Tr\left(\Phi^{\dagger}\Phi\right)$$

with a scalar glueball and the pseudo(scalar) mesons

$$\mathcal{L}_{\tilde{G}G}^{int} = ic_{\tilde{G}G\Phi}\tilde{G}G\left(\det\Phi - \det\Phi^{\dagger}\right)$$

with scalar and pseudoscalar mesons

$$\mathcal{L}_{\tilde{G}\Phi}^{int} = ic_{\tilde{G}\Phi}\tilde{G}\left(\det\Phi - \det\Phi^{\dagger}\right)$$

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Branching ratios for the decay of the excited pseudoscalar glueball into the pseudoscalar glueball

Quantity	The theoretical result
$\left \Gamma_{\tilde{G}\to\tilde{G}'KK}/\Gamma_{\tilde{G}}^{tot}\right $	0.0277
$\Gamma_{\tilde{G}\to\tilde{G}'\pi\pi}/\Gamma_{\tilde{G}}^{tot}$	0.9697
$\Gamma_{\tilde{G}\to\tilde{G}'\eta\eta'}/\Gamma_{\tilde{G}}^{tot}$	0.0026
$\Gamma_{\tilde{G}\to\tilde{G}'\eta\eta}/\Gamma_{\tilde{G}}^{tot}$	0.000012

The branching ratio for the decay of the excited pseudoscalar glueball into charmonium state $\Gamma_{\tilde{G} \to \eta_C \pi \pi} / \Gamma_{\tilde{G}_2}^{tot} = 0.001$

d 14/0 mm Cl3

Could be measured by **BESIII** and **PANDA**!

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Branching ratios for the decays of the excited pseudoscalar glueball into *PS* and scalar-isoscalar states as well as η and η'

Case (i): $\mathcal{L}_{\tilde{G}G}^{int}$	The theoretical result	Case (ii): $\mathcal{L}_{\tilde{G}\Phi}^{int}$	The theoretical result
$\Gamma_{\tilde{G} \to a_0 \pi} / \Gamma_{\tilde{G}_2}^{tot}$	0.0325	$\Gamma_{\tilde{G} \to a_0 \pi} / \Gamma_{\tilde{G}_3}^{tot}$	0.0313
$\Gamma_{\tilde{G}\to KK_S}/\Gamma_{\tilde{G}_2}^{tot}$	0.032	$\Gamma_{\tilde{G}\to KK_S}/\Gamma_{\tilde{G}_3}^{tot}$	0.001
$\Gamma_{\tilde{G} \to \eta f_0(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.00004	$\Gamma_{\tilde{G} \to \eta f_0(1370)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0014
$\Gamma_{\tilde{G} \to \eta' f_0(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.048	$\Gamma_{\tilde{G} \to \eta' f_0(1370)} / \Gamma_{\tilde{G}_3}^{tot}$	0.031
$\Gamma_{\tilde{G} \to \eta f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0068	$\Gamma_{\tilde{G} \to \eta f_0(1500)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0067
$\Gamma_{\tilde{G} \to \eta' f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0219	$\Gamma_{\tilde{G} \to \eta' f_0(1500)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0214
$\Gamma_{\tilde{G} \to \eta f_0(1710)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0008	$\Gamma_{\tilde{G} \to \eta f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0007
$\Gamma_{\tilde{G} \to \eta' f_0(1710)} / \Gamma_{\tilde{G}_2}^{tot}$	0.001	$\Gamma_{\tilde{G} \to \eta' f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	0.001

Could be measured by BESIII and PANDA!

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Branching ratios for the decays of the excited pseudoscalar glueball

into scalar-isoscalar states and (pseudo)scalar mesons

Walaa I. Eshraim, Stefan Schramm, Phys.Rev. D95 (2017) 014028 [arXiv:1606.02207 [hep-ph]].

Could be measured by BESIII and PANDA!

,	Case (i): $\mathcal{L}_{\tilde{G}G}^{int}$	The theoretical result	Case (ii): $\mathcal{L}_{\tilde{G}\Phi}^{int}$	The theoretical result
	$\square G \rightarrow \eta \pi \pi / \square \tilde{G}_2$	0.095	$\Gamma_{ ilde{G} ightarrow\eta\pi\pi}/\Gamma_{ ilde{G}_3}^{tot}$	0.1376
S	$\Gamma_{\tilde{G} \to \eta' \pi \pi} / \Gamma_{\tilde{G}_2}^{cor}$	0.111	$\Gamma_{\tilde{G} \to n' \pi \pi} / \Gamma_{\tilde{G}_2}^{\iota o \iota}$	0.1069
	$\Gamma_{\tilde{G} \to a_0 K K_S} / \Gamma_{\tilde{G}_2}^{cor}$	0.0026	$\Gamma_{\tilde{G} \to a_0 K K_S} / \Gamma_{\tilde{G}_3}^{cor}$	0.0025
	$\Gamma_{\tilde{G} \to \eta a_0 a_0} / \Gamma_{\tilde{G}_2}^{iot}$	0.0001	$\Gamma_{\tilde{G} o \eta a_0 a_0} / \Gamma_{\tilde{G}_3}^{tot}$	0.0001
	$\Gamma_{\tilde{G} \to a_0 \pi f_0(1370)} / \Gamma_{\tilde{G}_2}^{out}$	0.0003	$\Gamma_{\tilde{G} \to a_0 \pi f_0(1370)} / \Gamma_{\tilde{G}_3}^{oor}$	0.0003
	$\Gamma_{\tilde{G} \to a_0 \pi f_0(1500)} / \Gamma_{\tilde{G}_2}^{000}$	0.0034	$\frac{\Gamma_{\tilde{G} \to a_0 \pi f_0(1500)} / \Gamma_{\tilde{G}_3}^{tot}}{\Gamma_{\tilde{G}_3 \to -f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}}$	0.0032
	$\Gamma_{\tilde{G}\to a_0\pi f_0(1710)}/\Gamma_{\tilde{G}_2}^{ioi}$	0.0001	$\frac{\Gamma_{\tilde{G} \to a_0 \pi f_0(1710)} / \Gamma_{\tilde{G}_3}^{iot}}{\tilde{G}_3}$	0.0001
	$\Gamma_{\tilde{G} \to \eta f_0^2(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.0003	$\Gamma_{\tilde{G}\to\eta f_0^2(1370)}/\Gamma_{\tilde{G}_3}^{tot}$	0.001
	$\Gamma_{\tilde{G} \to \eta' f_0^2(1370)} / \Gamma_{\tilde{G}_2}^{tot}$	0.03×10^{-6}	$\Gamma_{\tilde{G} \to \eta' f_0^2(1370)} / \Gamma_{\tilde{G}_3}^{tot}$	0.006×10^{-6}
	$\Gamma_{\tilde{G} \to \eta f_0^2(1500)} / \Gamma_{\tilde{G}_2}^{to\tilde{t}}$	0.00004	$\Gamma_{\tilde{G} \to \eta f_0^2(1500)} / \Gamma_{\tilde{G}_3}^{tot}$	0.00001
	$\Gamma_{\tilde{G} \to \eta f_0(1370) f_0(1500)} / \Gamma_{\tilde{G}_2}^{tot}$	0.00003	$\Gamma_{\tilde{G} \to \eta f_0(1370) f_0(1500)} / \Gamma_{\tilde{G}_3}^{tot}$	0.0001
	$\frac{\Gamma_{\tilde{G} \to \eta f_0(1370) f_0(1710)} / \Gamma_{\tilde{G}_2}^{tot}}{\Gamma_{\tilde{G}_2}}$	3.798×10^{-6}	$\Gamma_{\tilde{G} \to \eta f_0(1370) f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	7.25×10^{-6}
	$\Gamma_{\tilde{G}\to KK_S f_0(1370)}/\Gamma_{\tilde{G}_2}^{cot}$	0.0025	$\Gamma_{\tilde{G}\to KK_S f_0(1370)} / \Gamma_{\tilde{G}_3}^{ioi}$	0.0025
	$\Gamma_{\tilde{G} \to KK_S f_0(1500)} / \Gamma_{\tilde{G}_2}^{ioi}$	0.00013	$-G \rightarrow K K_S f_0(1500) / - G_3$	0.00013
	$\Box G \rightarrow KK_S f_0(1710)/ \Box G_2$	6.2×10^{-6}	$\Gamma_{\tilde{G} \to KK_S f_0(1710)} / \Gamma_{\tilde{G}_3}^{tot}$	4.75×10^{-6}
	$\Gamma_{\tilde{G} \to K K \eta} / \Gamma_{\tilde{G}_2}^{iot}$	0.0668	$\Gamma_{\tilde{G} \to KK\eta} / \Gamma_{\tilde{G}_3}^{cor}$	0.0643
	$\frac{\Gamma_{\tilde{G}\to KK\eta'}/\Gamma_{\tilde{G}_2}^{tot}}{\Gamma_{\tilde{G}_2}^{tot}}$	0.045	$\frac{\Gamma_{\tilde{G}\to KK\eta'}/\Gamma_{\tilde{G}_3}^{tot}}{\Gamma_{\tilde{G}_3}/\Gamma^{tot}}$	0.044
	$1 \tilde{G} \rightarrow K_S K_S \eta / 1 \tilde{G}_2$	0.0002	${}^{\mathbf{I}} \bar{G} \rightarrow K_S K_S \eta / {}^{\mathbf{I}} \tilde{G}_3$	0.0002
	$\frac{\Gamma_{\tilde{G} \to \eta^3} / \Gamma_{\tilde{G}_2}^{tot}}{\Gamma_{\tilde{G}_2} / \Gamma_{tot}^{tot}}$	0.024	$\frac{\Gamma_{\tilde{G} \to \eta^3} / \Gamma_{\tilde{G}_3}^{tot}}{\Gamma_{\tilde{G}_3}^{tot}}$	0.0233
	$\Gamma \tilde{G} \rightarrow \eta'^3 / \Gamma \tilde{G}_2$	0.0048	$\frac{\Gamma_{\tilde{G} \to \eta'^3} / \Gamma_{\tilde{G}_3}^{tot}}{\Gamma_{\tilde{G}_3} / \Gamma_{\tilde{G}_3}^{tot}}$	0.0046
	$ I G \rightarrow \eta' \eta^2 / I \tilde{G}_2 $	0.005	$\tilde{G} \rightarrow \eta' \eta^2 / \tilde{G}_3$	0.0048
		0.0035	$\frac{1}{\tilde{G}} \tilde{G} \rightarrow \eta'^2 \eta / \frac{1}{\tilde{G}_3}$	0.0034
	$\frac{\Gamma_{\tilde{G} \to KK\pi} / \Gamma_{\tilde{G}_2}^{tot}}{\Gamma_{\tilde{G}_2} / \Gamma_{tot}^{tot}}$	0.489	$\frac{\Gamma_{\tilde{G}\to KK\pi}/\Gamma_{\tilde{G}_3}^{tot}}{\Gamma_{\tilde{G}_3}/\Gamma_{tot}^{tot}}$	0.471
	$\Gamma_{\tilde{G}\to K_S K_S \pi} / \Gamma_{\tilde{G}_2}^{tot}$	0.002	$\Gamma_{\tilde{G} \to K_S K_S \pi} / \Gamma_{\tilde{G}_3}^{tot}$	0.0057

Interaction Lagrangain for the excited pseudoscalar glueball

with excited scalar and excited pseudoscalar mesons

$$\mathcal{L}_{\tilde{G}^*\phi_E}^{int} = ic_{\tilde{G}^*\Phi_E}\tilde{G}^*\left(\det\Phi_E - \det\Phi_E^{\dagger}\right) \quad .$$

with the ordinary (pseudo)scalar mesons and the excited (pseudo)scalar mesons

$$\mathcal{L}_{\tilde{G}^*\Phi\Phi_E}^{int} = c_{\tilde{G}^*\Phi\Phi_E} \,\tilde{G}^* \, \left[\left(det\Phi - det\Phi_E^{\dagger} \right)^2 + \left(det\Phi^{\dagger} - det\Phi_E \right)^2 \right]$$

Branching ratios for the two-body decays of the excited pseudoscalar glueball

Case (i): $\mathcal{L}_{\tilde{G}^*\Phi_E}^{int}$	The theoretical result [MeV]
$\Gamma_{\tilde{G}^* \to a_{0E}\pi_E} / \Gamma_{\tilde{G}^* \Phi_E}^{tot}$	0.0367
$ \Gamma_{\tilde{G}^* \to K_E K_{SE}} / \Gamma_{\tilde{G}^* \Phi_E}^{tot} $	0.223
$\frac{\Gamma_{\tilde{G}^* \to \eta_{NE} \sigma_{NE}} / \Gamma_{\tilde{G}^* \Phi_E}^{tot}}{\Gamma_{\tilde{G}^* \Phi_E}}$	0.105
$\Gamma_{\tilde{G}^* \to \eta_{NE} \sigma_{SE}} / \Gamma_{\tilde{G}^* \Phi_E}^{tot}$	0.147
$\Gamma_{\tilde{G}^* \to \eta_{SE} \sigma_{NE}} / \Gamma_{\tilde{G}^* \Phi_E}^{tot}$	0.159

W. I. Eshraim, Phys.Rev.D 100 (2019) 9, 096007 [arXiv: 1902.11148 [hep-ph]].

Branching ratios for the two- and three-body decays of the excited pseudoscalar glueball

Quantity	The theoretical result [MeV]
$\Gamma_{\tilde{G} \to \eta \eta} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.002
$\Gamma_{\tilde{G} \to \eta \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.440
$\Gamma_{\tilde{G} \to \eta' \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.249
$\Gamma_{\tilde{G} \to \eta_{SE} \eta} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.0085
$\frac{\Gamma_{\tilde{G} \to \eta_{NE} \eta} / \Gamma_{\tilde{G} \Phi \Phi_{E}}^{tot}}{\Gamma_{\tilde{G} \Phi \Phi_{E}}^{tot}}$	0.0289
$\Gamma_{\tilde{G} \to \eta_{NE} \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.2082
$\Gamma_{\tilde{G} \to \pi \pi \sigma_{SE}} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.00016
$\Gamma_{\tilde{G} \to a_0 \pi \eta} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.0011
$\Gamma_{\tilde{G}\to\pi\pi f_0(1370)}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0405
$\Gamma_{\tilde{G}\to\pi\pi f_0(1500)}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0209
$\Gamma_{\tilde{G}\to\pi\pi f_0(1710)}/\Gamma_{\tilde{G}\Phi\Phi_E}^{tot}$	0.0003
$\Gamma_{\tilde{G} \to KKf_0(1370)} / \Gamma_{\tilde{G} \Phi \Phi_E}^{tot}$	0.000045

W. I. Eshraim, Phys.Rev.D 100 (2019) 9, 096007 [arXiv: 1902.11148 [hep-ph]].

Branching ratios for the two-body decays of the excited pseudoscalar glueball

Case (i): $\mathcal{L}_{\tilde{G}^*\Phi\Phi_E}^{int}$	The theoretical result [MeV]
$\Gamma_{\tilde{G}^* \to \eta\eta} / \Gamma_{\tilde{G}e^* \Phi \Phi_E}^{tot}$	7.399×10^{-7}
$\Gamma_{\tilde{G}^* \to \eta \eta'} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot}$	0.00019
$\Gamma_{\tilde{G}^* \to \eta' \eta'} / \Gamma_{\tilde{G} \Phi \Phi_E}^{ioi}$	0.00013
$\Gamma_{\tilde{G}^* \to \eta_{NE} \eta_{NE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot}$	0.000068
$\Gamma_{\tilde{G}^* \to \eta_{SE} \eta_{SE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E}$	7.16×10^{-6}
$\Gamma_{\tilde{G}^* \rightarrow \eta_{SE} \eta} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{cor}$	5.13×10^{-6}
$\Gamma_{\tilde{G}^* \to \eta_{SE} \eta_{NE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot}$	0.000044
$\Gamma_{\tilde{G}^* \rightarrow \eta_{SE} \eta'} / \Gamma_{\tilde{G}^* \Phi \Phi_E}$	0.000062
$\Gamma_{\tilde{G}^* \rightarrow \eta_N E \eta} / \Gamma_{\tilde{G}^* \Phi \Phi E}^{oor}$	0.000015
$\Gamma_{\tilde{G}^* \to \eta_{NE} \eta'} / \Gamma_{\tilde{G}^* \Phi \Phi_E}$	0.00019
$ \Gamma_{\tilde{G}^* \to \sigma_{NE} \sigma_{NE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E} / $	0.000011
$\Gamma_{\tilde{G}^* \to f_0(1370)\sigma_{SE}}/\Gamma_{\tilde{G}^*\Phi\Phi_E}$	8.2×10^{-6}
$\Gamma_{\tilde{G}^* \to f_0(1500)\sigma_{SE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{\infty}$	9.18×10^{-8}
$\Gamma_{\tilde{G}^* \to f_0(1370)\sigma_{NE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot}$	0.00003
$\Gamma_{\tilde{G}^* \to f_0(1500)\sigma_{NE}} / \Gamma_{\tilde{G}^*\Phi\Phi_E}^{tot}$	0.000022
$\Gamma_{\tilde{G}^* \to f_0(1710)\sigma_{NE}} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{ioi}$	6.54×10^{-7}
$\Gamma_{\tilde{G}^* \to f_0(1370) f_0(1370)} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{ioi}$	0.000012
$\Gamma_{\tilde{G}^* \to f_{(1500)}f_0(1500)}/\Gamma_{\tilde{G}^* \Phi \Phi_E}$	7.99×10^{-7}
$\Gamma_{\tilde{G}^* \to f(1710)f_0(1710)} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot}$	2.81×10^{-10}
$[\Gamma_{\tilde{G}^* \to f_0(1370) f_0(1500)} / \Gamma_{\tilde{G}^* \Phi \Phi_F}^{tot}]$	0.000027
$ \Gamma_{\tilde{G}^* \to f_0(1370) f_0(1710)} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot} $	4.71×10^{-7}
$\Gamma_{\tilde{G}^* \to f_0(1500)f_0(1710)} / \Gamma_{\tilde{G}^* \Phi \Phi_E}^{tot}$	1.99×10^{-6}

W. I. Eshraim, Phys.Rev.D 100 (2019) 9, 096007 [arXiv: 1902.11148 [hep-ph]].

