Higgs Rare and Exotic Decays at the LHC

Miha Muškinja obo the ATLAS and CMS Collaborations

PANIC 2021 Sunday, September 5, 2021

Introduction

- It has been almost 10 years since the discovery of the Higgs boson at the LHC,
- ATLAS and CMS have discovered (>5 σ) all main production processes and decay channels,
 - Coupling to bosons and 3rd gen. fermions,
 - Used in differential measurements (e.g. STXS).
- Searches for decays to 2nd generation fermions and other rare decays already show impressive results,
 - Today will cover $H \rightarrow \mu \mu / \ell \chi / cc$ in more detail.
- Both experiments also have extensive programs of searches for BSM Higgs decays,
 - Couplings to BSM can increase the decay rate to final states otherwise suppressed in SM,
 - Constraint on **Br(H→undetected) < 16%** (95% CL) from the Higgs combination measurement—lots of 'space' for new physics!

Miha Muškinja

Searches for rare Higgs decays

September 5, 2021

A candidate $H \rightarrow \mu\mu$ event in CMS

Search for the $H \rightarrow \mu\mu$ decay

- $H \rightarrow \mu\mu$ probes the Yukawa coupling for 2nd generation fermions,
 - Origin of the Yukawa couplings ranging over 6 orders of magnitude is unknown,
 - Any deviations from the SM would be a clear sign of new physics,
- $H \rightarrow \mu \mu$ is a small peak on top of a smoothly falling background dominated by $Z/\chi^* \rightarrow \mu\mu$ (S/B as low as 0.1%),
- The difference in the sensitivity between ATLAS and CMS driven mainly by the muon momentum resolution:

~2x better mass resolution in CMS due to the stronger solenoid magnetic field

$H \rightarrow \mu \mu$ Analysis Strategy

- A multivariate discriminant is trained to enhance the $H \rightarrow \mu\mu$ signal against the main SM background in each category (DY in ggH/VBF, tt/ttZ in ttH, VV in VH):
 - ggH: 12 (5) BDT categories in ATLAS (CMS),
 - VBF: 4 BDT categories in ATLAS, **DNN** trained in CMS,
- region to extract the signal yield,

September 5, 2021

Evidence of the $H \rightarrow \mu\mu$ Decay

- The $H \rightarrow \mu\mu$ search is statistically limited (relative stat. error in μ_{SIG} is 50% in ATLAS and 30% in CMS),
- VBF and ggH channels are the most sensitive,
- Observed compatibility with B-only hypothesis is:
 - 2.0σ (1.7 σ expected) in ATLAS,
- Potential for 5.0 σ at the end or Run 3 with a combination?

September 5, 2021

A candidate $H \rightarrow lly$ event in ATLAS

(2021) 136412 PLB 819

2017-10-28 09:47:43 CEST

Jet

Candidate $H \rightarrow \ell \ell \gamma$ event from the VBF enriched region with a merged electron.

Miha Muškinja

Search for the $H \rightarrow ll \gamma$ decay

- Production of $H \rightarrow ll \gamma$ ($l = e, \mu$) either through loop processes or lepton pair + FSR production,
 - Loop processes sensitive to coupling modifications introduced by BSM extensions,
 - Relative contribution of *ll*+FSR depends lepton mass,
- Very low branching ratio— O(0.01%),
- In addition, $H \rightarrow ll\gamma$ can probe CP-violation in the Higgs sector because of the three-body decay (JHEP05 (2013) 061).
- Analyses generally split into low and high di-lepton mass:
 - $m_{\ell\ell}$ < 30 to 50 GeV dominated by $H \rightarrow \gamma^* \gamma \rightarrow \ell \ell \gamma$,

September 5, 2021

Evidence of the $H \rightarrow ll \gamma$ Decay

- The $H \rightarrow lly$ searches are statistically limited,
- The low mass search is more sensitive due to smaller SM backgrounds,
- Observed compatibility with B-only hypothesis with **full Run 2** ATLAS data:
 - Low mass: 3.2σ (2.1σ expected), \leftarrow First evidence of the H \rightarrow y*y \rightarrow lly decay!
 - High mass: 2.2σ (1.2σ expected),
- CMS set upper limits on the $H \rightarrow \ell \ell \gamma$ production with 36 fb⁻¹: •
 - $3.9 \times SM$ (2.0 $\times SM$ expected) for combined low + high mass.

September 5, 2021

A candidate $H \rightarrow cc$ event in ATLAS

September 5, 2021

Miha Muškinja

Search for the $H \rightarrow cc decay$

- - $H \rightarrow cc$ with the VH production mode,

September 5, 2021

Miha Muškinja

$VH(\rightarrow cc)$ Search Results

- Upper limit on signal strength at 95% CL:
 - ATLAS: $26 \times SM$ ($31 \times SM$ expected),
 - CMS (36 fb⁻¹): 70 × SM (37 × SM expected),
- Signal strength:
 - ATLAS: -9 ± 10 (stat.) ± 11 (syst.),
 - CMS (36 fb⁻¹): 37 ± 17 (stat.) ± 10 (syst.),
- Similar size systematic uncertainty in µ_{SIG} between ATLAS and CMS— could decrease for CMS with full Run 2,
- Data stat. uncertainty match the lumi ratio of $\sqrt{(140 / 36)}$,
- κ_c interpretation from ATLAS:
 - $|\kappa_c| < 8.5$ at 95% CL,
 - More info in <u>backup</u>.

September 5, 2021

Higgs decays to light quarks

- Couplings to light quarks (s, u, d) accessible via Higgs decays to vector meson resonances in association with y or a massive Z boson:
 - $H \rightarrow [\phi \text{ or } \rho] [\gamma \text{ or } Z],$
 - Limits on μ_{SIG} generally at 10² to 10³ × SM,
- BSM physics (e.g. 2HDM) may enhance the Yukawa coupling to light quarks and increase the signal strength to the level of the current limit.

Searches for BSM Higgs decays

September 5, 2021

Landscape of searches for BSM Higgs decays

- otherwise forbidden in the SM,
- - Two Higgs doublets + an EWK singlet, enabling the $H \rightarrow aa \rightarrow XXYY$ decay topology,
- Constraint on **Br(H** \rightarrow **undetected)** < 16% (95% CL) from the Higgs combination (see 1st page).

September 5, 2021

The general strategy is to look for decays of the Higgs boson to BSM particles or final states that are

Searches with BSM decay products usually interpreted with the '2HDM+S Type-N' benchmark model,

Jarks			- Mesons -		$2Lep - 2q/g - 2\gamma - 2b$ ——					
С	b	Inv.	ϕ, ρ	$J/\psi, \Upsilon$	$\ell^{\pm}\ell^{\mp}$	$\tau^{\pm}\tau^{\mp}$	qq/gg	γγ	bb	Other
							11,00			
		-	_	[3]	[<mark>7</mark>]	-	[3]	-	-	-
										-
		[<mark>16</mark>]	[17]	[18]	[19]	-	_	_	-	-
-	_									
[20]										
	SM									
		[21]			-	-	-	-	-	-
			-	-						
				-						
					[<mark>7</mark>]	[<mark>10</mark>]	_	_	[2]	_
		U				-	-	_	-	-
		q					-	[<mark>6</mark>]	-	-
		S.						[<mark>9</mark>]	-	-
					BSIVI decay				[4, 5]	_
		<u> </u>			products					Many LLP

Lepton Flavor Violating Higgs Decays

- Both ATLAS and CMS looked for LFV Higgs decays and had set upper limit on the branching ratios (95% CL),
- ATLAS Full Run 2:
 - Br $(H \rightarrow e\mu)$: 6.1×10⁻³%,
 - Br ($H \rightarrow ee$): **3.6**×**10**-2%,
- CMS Full Run 2:
 - Br $(H \rightarrow \mu \tau)$: 0.15%,
 - Br $(H \rightarrow e\tau)$: 0.22%,
- ATLAS 36 fb⁻¹:
 - Br (H→μτ): 0.28%,
 - Br $(H \rightarrow e\tau)$: **0.47%**.

 $\mu \tau_{h}$, 1 Jet $\mu \tau_{h}$, 2 Jets $\mu\tau_{a}$, 0 Jets $\mu\tau$, 1 Jet $\mu \tau$, VBF μτ

September 5, 2021

Miha Muškinja

An overview of H \rightarrow aa $\rightarrow XXYY$

- The phase-space covered from $m_a = 1$ GeV to $m_a = 60$ GeV,
- Limit on $Br(H \rightarrow undetected) < 16\%$ from the Higgs combination,
- Interpreted with 2HDM+S, limits depend on the model parameters,
 - Different final states dominate different mass ranges due to the **Br** dependence,
- The strongest limits generally placed with leptonic final states,
- A few highlights given in the following slides.

Search for $H \rightarrow 4\ell$ in ATLAS (July 2021)

- Search for final states with 4^l via spin-0 or spin-1 resonances (dark boson Z_d , or s/a from 2HDM),
 - Low Mass (LM): $H \rightarrow XX \rightarrow 4\ell$ (1 < m_X < 15 GeV) zero observed events,
 - High Mass (HM): $H \rightarrow XX \rightarrow 4\ell$ (15 < m_X < 60 GeV) 20 observed events,
 - ZX Analysis: $H \rightarrow ZX \rightarrow 4\ell$ (15 < m_X < 55 GeV) O(1000) observed events,
- Model independent limits set on fiducial cross section in each channel,
- Model dependent limits set using the Zd and 2HDM benchmark models.

ATLAS-CONF-2021-034

Search for $H \rightarrow 4\gamma$ in CMS (July 2021)

- Search for final states with 4y via spin-0 resonances,
- SM background from $\gamma\gamma$ + jets, γ + jets, and multi-jet with fake photons,
 - Estimated in a data-driven way with 'Event Mixing'— take the measured dataset, but replace 3/4 photons from consecutive events,
- Train a **BDT** to separate between signal and background,
 - Trained separately for each m_a,
- Signal extracted with a fully parametric fit to the m_{4y} spectrum.

Search for $H \rightarrow bb\mu\mu$ in ATLAS (March 2021)

- SM background from DY + jets and ttbar reduced with **BDTs**,
 - Separately for each m_a because the topology changes with mass,
- Kinematic likelihood fit constrains m_{2b} to $m_{2\mu}$ to improve $\sigma(m_{2b2\mu})$,
- Fit the m_{2b2µ} with a MC-based statistical model to extract the signal.

September 5, 2021

ATLAS-CONF-2021-009

Higgs Rare and Exotic Decays: Summary

- 35.9-137 fb⁻¹ (13 TeV) Decays to heavy bosons and 3rd gen. fermions firmly established, É $\sqrt{K_{v}}$ **CMS** Supplementary With the evidence of $H \rightarrow \mu\mu$ experiments became sensitive to the m_H = 125.38 GeV ἕ|>¹⁰ p-value = 44% BEH mechanism for 2nd gen. fermions, \mathbf{C} 10⁻² • First evidence of $H \rightarrow \ell \ell \gamma$ for $m_{\ell \ell} < 30$ GeV, Quarks - High $m_{\ell\ell}$ mass $H \rightarrow Z\gamma$ at 2σ sensitivity, 10^{-3} Limit of $\mu(VH_{cc}) < 26 \times SM$ placed with the direct H \rightarrow cc search, 10-4 SM Searches for other rare couplings such as electrons, s-quarks, and light-quarks also performed and no significant deviations from SM found. Ratio 0.5^Ľ particle mass (GeV)

September 5, 2021

- Extensive searches for BSM decays performed,
- Strong limits on LFV Higgs decays (H $\rightarrow e\mu/e\tau/\mu\tau$),
- Good coverage of $H \rightarrow (aa / Za) \rightarrow XXYY$ models,
- Presented new results: ATLAS 42, 2b2µ and CMS 4y,
- Some final states remain uncovered, e.g. $XX \neq YY$ or light jets final states (u, d, s, g),
- Many possible Long Live Particle scenarios left to explore.

Miha Muškinja

Innovative Background Modeling in $H \rightarrow \mu\mu$

- Background modeling is difficult because it needs to be reliable at the level of S/B (as low as 0.1% in some ggH categories), while the number of background events is $O(10^5)$,
- Both ATLAS and CMS pursued this crucial idea:

This construction minimizes the needed DoF, hence maximizing the sensitivity!

Parameters uncorrelated across categories. Additionally 1 to 4

Miha Muškinja

C)
C	D
Ć	5
σ)
-	-
Ċ	5
Ξ	
\overline{d}	
ž	4
2	

$H \rightarrow lly$ Analysis Strategy

- Mostly a cut-based selection depending on lepton and photon kinematics,
 - VBF events selected with additional jets,
 - VH and ttH events selected with additional lepton requirements in the **CMS analysis only**,
- ATLAS developed a BDT to select VBF-enriched events at high m_{ll} mass,
- A challenge at low m_{ll} mass is poor separation be the two leptons,
- ATLAS developed a special ID for 'merged elec with EM showers overlapped in the calorimeter,
- A parametric fit of the m_{lly} distribution performed category to extract the signal,
- Number of categories:
 - Low mass: 9 (4) in ATLAS (CMS),
 - High mass: 6 (13) in ATLAS (CMS).

				Num	ber of si	gnal eve
	Analysis	Channel	Category	for $m_{\rm H} = 125 {\rm GeV}$		
otwoon				ggH	VBF	VH + t
elween		μμ	EB, high R ₉	9.18	0.47	0.33
	$\mathbf{H} \rightarrow \alpha^* \alpha \rightarrow \mu \mu \alpha$	μμ	EB, low R_9	5.17	0.27	0.18
_	$\Pi \rightarrow \gamma \gamma \rightarrow \mu \mu \gamma$	μμ	EE	3.80	0.20	0.25
ctrons'	Low mass	μμ	Dijet tag	0.45	0.39	0.01
		$ee + \mu\mu$	Lepton tag	0.08	0.014	0.33
		ee	Dijet tag	0.34	0.47	0.02
in each		ee	Boosted	3.38	0.56	0.33
		ee	Untagged 1	5.2	0.15	0.06
		ee	Untagged 2	3.2	0.09	0.04
		ee	Untagged 3	3.9	0.12	0.06
	${ m H} ightarrow { m Z} \gamma ightarrow \ell \ell \gamma$	ee	Untagged 4	2.8	0.08	0.04
	Ligh maga	μμ	Dijet tag	0.44	0.62	0.02
	пign mass	μμ	Boosted	4.51	0.74	0.44
		μμ	Untagged 1	7.6	0.22	0.097
	CMS, 36 fb ⁻¹	μμ	Untagged 2	4.8	0.14	0.06
		μμ	Untagged 3	4.1	0.12	0.06
		µµ	Untagged 4	3.5	0.11	0.06

$VH(\rightarrow cc)$ Kappa Framework Interpretation

- Assume $\kappa_x = 1.0$ for other fermions and bosons and no BSM,
- Direct limit: $|\kappa_c| < 8.5$ at 95% CL.
- Differential $p_T(H)$ measurements also give indirect constraints on κ_c ,
 - Modifies the rates through the production and decay loops,
 - Most sensitive are $H \rightarrow ZZ^*$ and $H \rightarrow \chi \chi$ decay modes,
 - Indirect limits depends heavily on model assumptions
 - Generally comparable to the direct constraints from $VH(\rightarrow cc)$.

-30

Direct κ_c constraint from VH(\rightarrow cc)

- Comb. (obs.) 00 -ATLAS Preliminary ····· Comb. (exp.) 2021 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ - 0-lepton (obs.) - 1-lepton (obs.) ONF- $|\kappa_{c}| < 8.5$ at 95% CL -2-lepton (obs.) AT 20 -20 -10 10 30 0 Not sensitive to κ_c with $\mu_{SIG} > 35$. 22 ATLAS Preliminary μ_{νн(cē)}(κ_c) $\lim_{\kappa_{c} \to \infty} \mu_{VH(c\overline{c})}(\kappa_{c}) = 1 / B_{H \to c\overline{c}}^{SM} \approx 34.6$ 25 30 10 $|\kappa_{c}|$

