





## **Double Higgs production at the LHC**

Louis Portales (LLR, CNRS) for the ATLAS & CMS collaborations PANIC2021 – Lisbon (online) – 05/09/2021

## **HH production**

- Non-resonant production
  - Box & triangle diagrams destructive interference
    - → Small production cross-section
  - Access to K<sub>t</sub>, K<sub>λ</sub>, K<sub>V</sub>, K<sub>2V</sub>
    - → Direct probe of Higgs potential
    - → NP could appear as non-SM couplings







## **HH production**

- Non-resonant production
  - Box & triangle diagrams destructive interference
    - → Small production cross-section
  - Access to  $K_t$ ,  $K_\lambda$ ,  $K_V$ ,  $K_{2V}$ 
    - → Direct probe of Higgs potential
    - → NP could appear as non-SM couplings
- Resonant production
  - Looking for bumps in m<sub>HH</sub> distributions
  - Predicted by many BSM models
    - → WED, HMSSM, 2HDM, ...
  - Typically **spin-0/2 resonances** with m<sub>x</sub>>250 GeV





## **HH production**

- Non-resonant production
  - Box & triangle diagrams destructive interference
    - → Small production cross-section
  - Access to κ<sub>t</sub>, κ<sub>λ</sub>, κ<sub>ν</sub>, κ<sub>2ν</sub>
    - → Direct probe of Higgs potential
    - → NP could appear as non-SM couplings
- Resonant production
  - Looking for bumps in m<sub>HH</sub> distributions
  - Predicted by many BSM models
    - → WED, HMSSM, 2HDM, ...
  - Typically **spin-0/2 resonances** with m<sub>x</sub>≥250 GeV
- Final states
  - Large variety, various branching ratios
    - → Usually taking advantage of **large BR(H→bb)**





Mainly focusing on full Run-2 results

# **Combinations & prospects**

### 36 fb<sup>-1</sup> HH combinations

#### ATLAS: \_

- $\rightarrow$  6 channels combined
- → Leading channel: bbtt
- CMS:
  - $\rightarrow$  4 channels combined
  - → Leading channel: bbyy
- Reached limit of ~10 times SM prediction \_

### **Extrapolation performed for HL-LHC**

- Based on available 36 fb<sup>-1</sup> results
- Single-experiment and ATLAS+CMS combination
  - → Evidence expected, but no observation
  - $\rightarrow$  Exclusion of  $\kappa_{\lambda}=0$  at 95% CL expected



ATLAS and CMS 3000 fb<sup>-1</sup> (14 TeV) **HL-LHC** prospects - ATLAS - CMS Combination 95% 68%



#### HL-LHC prospect (14 TeV, 3 ab<sup>-1</sup>)

|                                         | Statistical-only |      | Statistical + Systematic |      |
|-----------------------------------------|------------------|------|--------------------------|------|
|                                         | ATLAS            | CMS  | ATLAS                    | CMS  |
| $HH \rightarrow b\bar{b}b\bar{b}$       | 1.4              | 1.2  | 0.61                     | 0.95 |
| $HH \rightarrow b\bar{b}\tau\tau$       | 2.5              | 1.6  | 2.1                      | 1.4  |
| $HH  ightarrow b \bar{b} \gamma \gamma$ | 2.1              | 1.8  | 2.0                      | 1.8  |
| $HH \to b\bar{b}VV(ll\nu\nu)$           | -                | 0.59 | -                        | 0.56 |
| $HH \to b\bar{b}ZZ(4l)$                 | -                | 0.37 | -                        | 0.37 |
| combined                                | 3.5              | 2.8  | 3.0                      | 2.6  |
|                                         | Combined         |      | Combined                 |      |
|                                         | 4.5              |      | 4.0                      |      |
|                                         |                  |      |                          |      |

5/28

ATLAS

CMS

PLB 800 (2020) 135103

### HH→4b

#### ATLAS

PLB 801 (2020) 135145 (non-res.) ATLAS-CONF-2021-016 (res. + non-res.) JHEP 11 (2020) 163 (boosted res.) ATLAS-CONF-2021-030 (res. + non-res.) JHEP 07 (2020) 108 (VBF res. + non-res.) ATLAS-CONF-2021-035 (res.)

<u>ATL-PHYS-PUB-2021-031</u> (summary plots)

CMS

<u>JHEP 03 (2021) 257</u> (non-res.) <u>HIG-20-014</u> (res. X-YH) <u>HIG-20-005</u> (resolved res.) <u>B2G-21-001</u> (boosted VBF non-res.) <u>B2G-20-004</u> (boosted res.) <u>SUS-20-004</u> (HH+MET) <u>HIG-20-004</u> (non-res.) <u>B2G-20-007</u> (res.)

## HH→4b – Non-resonant (resolved)



### • Resolved analysis

- ≥4 jets (3 b-tagged)
- ggF/VBF categorisation
  - → BDT-based ("ggF-killer")
- m<sub>нн</sub> categories for ggF
  - → Dedicated BDT discriminant
- ggF-killer categories for VBF
  - → m<sub>HH</sub> used as discriminant



### HH→4b – Non-resonant (resolved)



8/28

ATLAS (JHEP 01 (2019) 030) JHEP 07 (2020) 108

## HH→4b – Resolved VBF

[qJ] (‼HH

🔄 10⁴

-dd -dd α<sup>/BE</sup>

 $10^{2}$ 

10

- Based on partial Run 2 ggF analysis
  - ≥4 b-jets
    - → BDT-based identification
  - VBF specific: 2 opposite-η "VBF jets"
  - BDT-based b-jet energy regression
  - Main backgrounds:
    - → QCD: Data-driven in side-band region
    - → tt
      : normalisation from data
  - Limit setting from fit on m<sub>HH</sub>
    - → Resonant: no significant excess max 1.5 σ local significance @ 550 GeV
  - − → Non-resonant:

-0.43 < **K<sub>2V</sub>** < 2.56 (0.55 < **K<sub>2V</sub>** < 2.72) observed (expected)



#### CMS B2G-21-001

# HH→4b – Non-resonant (boosted VBF)

### Boosted VBF HH→bbbb

- Boosted regime  $\rightarrow$  high sensitivity to  $\kappa_{2V}$
- High pT Higgs bosons  $\rightarrow$  collimated decays
  - → 2 R=0.8 anti- $k_T$  jets in final state
  - → No combinatorics issues
  - → Large **QCD background** (sideband estimate)
- NN-based H→bb identification *ParticleNet* → Multi-class (bb, cc, QCD) *Graph neural network*
  - $\rightarrow D_{bb} = \frac{P(H \rightarrow bb)}{P(H \rightarrow bb) + P(QCD)}$
  - → Used to define 3 purity-based categories
  - → Also used for **mass regression**







### HH→4b – Non-resonant (boosted VBF)

### **Observed (expected) 95% CL:**

→  $0.8 < |\kappa_V| < 1.2$  ( $0.8 < |\kappa_V| < 1.2$ )

→  $0.6 < \frac{\kappa_{2V}}{\kappa_{2V}} < 1.4 (0.6 < \frac{\kappa_{2V}}{\kappa_{2V}} < 1.4)$ 





#### ATLAS

CMS

#### DeepAK8 JINST 15 (2020) P06005

#### B2G-20-004

ATLAS-CONF-2021-035

## HH→4b – Resonant

- CMS: (Semi-)boosted
  - 2 R=0.8 anti-k<sub>T</sub> jets or 1 R=0.8 jet + 2 b-tagged R=0.4 jets
  - NN-based identification and categorisation **DeepAK8**
  - Limits from 2D fit:  $m_{J1}$  vs  $m_{red}(=m_{JJ}-(m_{J1}-m_{H})-(m_{J2}-m_{H}))$
- ATLAS: Resolved+boosted
  - Resolved analysis ( 250-1500 GeV )
    - → 4 b-tagged R=0.4 jets ( 2 b-tag QCD CR )
    - $\rightarrow$  BDT-based H $\rightarrow$ bb pairing
    - $\rightarrow$  Elliptical mH1 vs mH2 cut ( SR / QCD-CR )
  - Boosted analysis ( 900-3000 GeV )
    - $\rightarrow$  2 R=1.0 jets (  $\geq$ 1 b-tagged )
    - $\rightarrow$  b-tagged based categorisation ( + elliptical mass cut )
  - Limits from m<sub>HH</sub> fit (both Resolved & boosted)



ATLAS ATLAS-CONF-2021-035 CMS B2G-20-004

### HH→4b – Resonant



#### No significant excess

ATLAS: max 2.6 σ (1.0 σ) local (global) (Spin 0) 2.7 σ (1.2 σ) local (global) (Spin 2) @ 1.1 TeV

### **Comparable limits**

- **CMS** spin-2 observed (expected):
  - $\rightarrow \sigma \, x \; \text{BR}(\text{X}{\rightarrow}\text{HH})$  (3 TeV)  $\sim 0.58$  ( 0.88 ) fb
  - $\rightarrow \sigma \, x \; \text{BR}(\text{X}{\rightarrow}\text{HH})$  (1 TeV)  $\sim$  14.7 ( 8.8 ) fb
- **ATLAS** spin-2 observed (expected):
  - $\rightarrow \sigma \ x \ BR(X {\rightarrow} HH)$  (3 TeV)  $\sim 1.0$  ( 1.0 ) fb
  - $\rightarrow \sigma \times BR(X \rightarrow HH)$  (1 TeV) ~ 8.0 ( **8.0** ) fb

### HH→bbττ

#### ATLAS

PLB 801 (2020) 135145 (non-res.) ATLAS-CONF-2021-016 (res. + non-res.) JHEP 11 (2020) 163 (boosted res.) ATLAS-CONF-2021-030 (res. + non-res.) JHEP 07 (2020) 108 (VBF res. + non-res. ATLAS-CONF-2021-035 (res.) ATL-PHYS-PUB-2021-031 (summary plots)

#### CMS

JHEP 03 (2021) 257 (non-res.) HIG-20-014 (res. X→YH) HIG-20-005 (resolved res.) B2G-21-001 (boosted VBF non-res.) B2G-20-004 (boosted res.) SUS-20-004 (HH+MET) HIG-20-004 (non-res.) B2G-20-007 (res.)

## HH→bbττ – Resolved

### ΗΗ→bbττ

- $\tau_{had}\tau_{had} + \tau_{lep}\tau_{had}$  decays (lep = e,µ)
  - → ~88% of all decays
- Categorisation based on di-τ decay modes and triggers
  - $\rightarrow \tau_{had} \tau_{had}$ : Single/di- $\tau_{had}$
  - → SLT  $\tau_{lep}\tau_{had}$ : Single-lepton triggers
  - → LTT  $\tau_{lep}\tau_{had}$ : Lepton+ $\tau_{had}$  triggers
- Data-driven fake τ backgrounds (tt, QCD) estimation
- True τ backgrounds (tt̄, Z+HF) normalisation from data
- Non-resonant analysis
  - BDT ( $\tau_{had}\tau_{had}$ ) + DNNs ( $\tau_{lep}\tau_{had}$ ) for signal extraction
  - − σ(ggF+VBF) < 3.87 (4.65) σ<sub>sм</sub> ←

~ 3x improvement w.r.t previous analysis ! (best limit to date)



## HH→bbττ – Resolved

#### ΗΗ→bbττ

- $\tau_{had}\tau_{had} + \tau_{lep}\tau_{had}$  decays (lep = e,µ)
  - → ~88% of all decays
- Categorisation based on di-τ decay modes and triggers
  - $\rightarrow \tau_{had} \tau_{had}$ : Single/di- $\tau_{had}$
  - → SLT  $\tau_{lep}\tau_{had}$ : Single-lepton triggers
  - → LTT  $\tau_{lep}\tau_{had}$ : Lepton+ $\tau_{had}$  triggers
- Data-driven fake τ backgrounds (tt̄, QCD) estimation
- True τ backgrounds (tt̄, Z+HF) normalisation from data
- Resonant analysis
  - Parametric (in m<sub>x</sub>) NN for signal extraction
  - Largest excess @ 1 TeV: 3.1  $\sigma$  (2.1  $\sigma$ ) local (global)



## HH→bbττ – Boosted

### High-mass resonant search

- Looking for boosted bb and  $\tau_{had}\tau_{had}$  pairs
  - → bb: b-tagged R=1.0 jet
  - →  $\tau_{had}\tau_{had}$ : R=0.1 jet, R=0.2 sub-jets (dedicated reconstruction)

BDT-based identification vs QCD jets

- Data-driven QCD background estimate + di-τ tagger efficiency corrections

Events

- Limits from m<sub>HH</sub> fit
  - $\rightarrow$  In signal region with 60<m<sub>J</sub><160 GeV
  - →  $m_{HH}^{vis}$ >900 (1200) GeV for  $m_x \ge 1.6$  (2.5) TeV hypotheses
  - → No significant excess found





#### ATLAS

17

HH→bbyy

PLB 801 (2020) 135145 (non-res.) ATLAS-CONF-2021-016 (res. + non-res.) JHEP 11 (2020) 163 (boosted res.) ATLAS-CONF-2021-030 (res. + non-res.) JHEP 07 (2020) 108 (VBF res. + non-res.) ATLAS-CONF-2021-035 (res.) ATL-PHYS-PUB-2021-031 (summary plots)

#### CMS

<u>JHEP 03 (2021) 257 (non-res.)</u> <u>HIG-20-014</u> (res. X+YH) <u>HIG-20-005</u> (resolved res.) <u>B2G-21-001</u> (boosted VBF non-res.) <u>B2G-20-004</u> (boosted res.) <u>SUS-20-004</u> (HH+MET) <u>HIG-20-004</u> (non-res.) <u>B2G-20-007</u> (res.)

#### ATLAS ATLAS-CONF-2021-016 CMS JHEP 03 (2021) 257



# HH→bbγγ

# HH→bbyy

HH→ bbyy

Tiny BR (~0.26%) • Fully reconstructed final state Excellent m<sub>vv</sub> resolution

- **ATLAS** analysis
  - Resonant + Non-resonant ggF+VBF
    - → Analysis optimised for ggF
  - Categorisation based on MVA + m<sup>\*</sup><sub>bbvv</sub>
    - → Non-resonant: high/low-mass, 2 dedicated BDT
    - $\rightarrow$  Resonant: mass-independant BDT + m<sup>\*</sup><sub>bbyy</sub> windows
  - m<sub>vv</sub> for signal extraction

→ σ(HH) < 4.1 (5.5) σ<sub>SM</sub>

#### ATLAS ATLAS-CONF-2021-016 CMS JHEP 03 (2021) 257



### HH→bbVV

#### ATLAS

#### PLB 801 (2020) 135145 (non-res.)

ATLAS-CONF-2021-016 (res. + non-res.) JHEP 11 (2020) 163 (boosted res.) ATLAS-CONF-2021-030 (res. + non-res.) JHEP 07 (2020) 108 (VBF res. + non-res.) ATLAS-CONF-2021-035 (res.) ATL-PHYS-PUB-2021-031 (summary plots)

#### CMS

JHEP 03 (2021) 257 (non-res.) HIG-20-014 (res. X+YH) HIG-20-005 (resolved res.) B2G-21-001 (boosted VBF non-res.) B2G-20-004 (boosted res.) SUS-20-004 (HH+MET) HIG-20-004 (non-res.) B2G-20-007 (res.)

## HH→bb4l – Non-resonant

- $HH \rightarrow bbZZ^* \rightarrow bb4I (I = e,\mu)$ 
  - First result in this channel
  - BR = 0.014% !
  - But small background & clear signature
    - → Main background: single-H
  - 2 pairs of OS leptons (4µ, 4e, 2e2µ), 2 b-tagged R=0.4 jets
  - SR definition:  $|m_{4l} 125| < 10 \text{ GeV}$
  - Signal extraction through fit on BDT discriminant

### **Observed (expected) 95% CL:**

→ σ(ggF HH) < 30 (37) σ<sub>sм</sub>

→  $-9 < \kappa_{\lambda} < 14$  (-11 <  $\kappa_{\lambda} < 16$ )



22 / 28

Data

SR

9

11

 $d_{HH}$ 

## HH→bblvlv – Non-resonant

#### HH→bblvlv

- Analysis optimised for bbWW\*
  - $\rightarrow$  Dominant signal
  - $\rightarrow$  bbZZ\* + bbtt included in signal definition
- Multi-class DNN for event selection

$$\rightarrow \quad d_{\rm HH} = \ln\left(\frac{P(\rm HH)}{P(t) + P(Z \rightarrow ll) + P(Z \rightarrow \tau \tau)}\right)$$

- → Optimised cuts for two flavour-based categories
- $\rightarrow$  20 < m<sub>II</sub> < 60 GeV, 110 < m<sub>bb</sub> < 140 GeV
- Background controlled in mass side-bands
- Counting experiment for signal extraction
  - $\rightarrow$  Single bin per region (SRs + CRs)

### **Observed (expected) 95% CL:**

→ σ(ggF HH) < 40 (29) σ<sub>sm</sub>

Events / Тор  $\sqrt{s} =$  13 TeV, 139 fb<sup>-2</sup>  $Z/\gamma^*$ +jets HF 10<sup>6 -</sup> Selection: Other SR, SF+DF and no  $d_{HH}$  cut 10<sup>5</sup> *HH* (×20) 10<sup>4</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>0</sup> 10<sup>-1</sup> Data / Pred. 1.5 1.25 1.0 0.75 0.5 -11 -9 3 3 5

ATLAS

 $10^{7}$ 

23/28

## HH→bbWW – Resonant

- High-mass X→HH→bbWW search
  - 1 < mX < 4.5 TeV
    - → Looking at boosted topologies
  - H→bb
    - → R=0.8 "b $\overline{b}$ " jet (**DeepAK8** for identification)
  - H→WW
    - → Single-lepton + R=0.8 "qq" jet (WW→lvqq)
  - → Di-lepton (WW→lvlv, ττ→lvvlvv) *update w.r.t. 36 fb*<sup>-1</sup> *analysis*
  - Fine categorisation
    - → Based on various properties (flavor, DeepAK8, substructure)
    - → 8 Single-lepton + 4 Di-lepton categories
  - Limit setting from 2D ( $m_{\mbox{\tiny bb}}, m_{\mbox{\tiny HH}}$ ) fit
    - $\rightarrow$  ~ 1 order of magnitude gained w.r.t. 36 fb<sup>-1</sup> analysis
    - $\rightarrow$  Scan range extended by 1 TeV !





## **Summary**

#### • Large selection of new HH results using the full Run 2 datasets (~140 fb<sup>-1</sup>)

- Both non-resonant & resonant production
- Different topologies (boosted & resolved)
- Different production modes (ggF & VBF)
- Unprecedented sensitivities
  - Highly improved limits ( ~3-10 x, both res. and non-res.)
    - → Naive luminosity scaling ~ 2 x
    - $\rightarrow$  Single channels better than 36 fb<sup>-1</sup> combinations
  - Highly improved constraints on couplings
    - →  $\kappa_{2V} \leq 0$  excluded !
- Still much more data to come (Run 3 & HL-LHC)
  - Lots of optimism for the future !





### **DeepAK8 vs ParticleNet**

#### DeepAK8

- Particle-flow candidates+ secondary vertices as inputs
- Convolutional neural network
- Multi-category output: (H,t,W,Z)→(bb,cc,qq,4q)
- ParticleNet
  - Same inputs as DeepAK8
  - Graph neural network
  - ~ 2x improved bb vs QCD discrimination w.r.t. DeepAK8
  - Performance much less impacted when introducing mass decorrelation
  - Used as mass regressor with minimal modifications
    - → Same inputs, training samples and overall architecture
    - → Different target: signal (pole) mass / background (particle level) SD mass

