Higgs Differential Cross-Section

Measurements

Arun Kumar Rice University, USA

PANIC : Sept 5 - Sept 10, 2021

Introduction

- Higgs Physics program of LHC experiments has been focussing on properties measurement in past years.
- With Run-II dataset, there is a great opportunity to perform more "precision" measurements in various phase-space corners using Higgs boson as benchmark
 - Differential Fiducial XS measurements → minimum theory and model dependence
- Most of the analyses are already updated with full Run-II luminosity.

Higgs boson distribution shapes are sensitive to "new Physics"

explore the unknown Physics using known

• Focus is on full Run-II differential results from CMS and ATLAS experiments.

Analysis	Experiment	Reference
Η→ττ	CMS	<u>HIG-20-015</u>
Boosted H→bb	CMS, ATLAS	ATLAS-CONF-2021-010, JHEP12(2020)085
H→ZZ→4I	CMS, ATLAS	<u>HIG-19-001, Eur. Phys. J. C 80</u> <u>(2020) 942</u>
$H \rightarrow \gamma \gamma$	CMS*, ATLAS	<u>HIG-19-015</u> , <u>ATLAS-CONF-2019-029</u>
$H \rightarrow ZZ \rightarrow 4I + H \rightarrow \gamma \gamma$	ATLAS	ATLAS-CONF-2019-032
$H \rightarrow WW \rightarrow 2I2v$	CMS	<u>HIG-19-002</u>

* inclusive only

Higgs Differential : A. Kumar

$H \rightarrow \tau \tau$

$H \rightarrow \tau \tau$: Overview

- → With high B.R. (6%) for Higgs at 125 GeV, H→ττ is an important channel for measurement of Higgs boson properties specially in pT and njets variables.
- → Variables considered : pT(H), NJets, leading jet pT
- → All final states considered except the fully leptonic same flavour (ee and $\mu\mu$)
- → Events in $\tau_h \tau_h$ final state are required to have at least one jet with pT > 30 GeV
- → First Differential measurement in this decay mode.

The fit is done on the mass of the $\tau\tau$ system (m_{$\tau\tau$}), reconstructed with a simplified matrix-element algorithm

Main backgrounds :

- $Z \rightarrow \tau \tau$, Top and di-Boson
 - ◆ Estimated using tau-embedded samples → replace muons from di-muon data sample by simulated taus
- → Jets mis-identified as τ_{h}
 - Misidentification probability estimated in data from

$H \rightarrow \tau \tau$: Results

- → Results are compared with Powheg and also Powheg weighted with NNLOPS
- → Measurement is inclusive in production modes
- → Good agreement with SM expectation
 - p(pT_H) = 17%, p(Njets) = 71%, p(pTj1) = 45%
- → Fiducial cross-section is extracted from Njets

• $\sigma^{\text{fid}} = 426 \pm 102 \text{ fb} \ (\sigma_{\text{SM}}^{\text{fid}} = 428 \pm 27 \text{ fb})$

Unfolding is embedded into likelihood

$$\mathcal{L} = \prod_{i} Poisson\left(n_{i}; \sum_{j} R_{ij}(\theta) \ \mu_{j} + b_{i}\right) \cdot \mathcal{C}(\theta) \cdot \mathcal{K}(\mu)$$
Regularization term (optional),
Tikhonov scheme in this analysis

Higgs Differential : A. Kumar

Boosted $H \rightarrow bb$

Boosted H→bb : Overview

- → H→bb has the highest branching ratio (~ 58%)
 - High BR compensates for the drop in Xsec at high pT
 - can probe quasi point-like couplings within ggF loop structure
- → High QCD background makes this analysis very challenging
- → Boosted topology of Higgs decay has been used in this analysis
 - Merged jet with large radius with 2 sub-jets
 - Jet mass distribution is used to extract the signal
 - ATLAS selection :
 - pT_{i1} > 450 GeV
 - pT₁₂ > 250 GeV
 - Two prong sub-jet structure is considered
 - 2 sub-jets are required to pass b-tag requirement
 - CMS :
 - pT_{i1} > 450 GeV
 - dedicated MVA tagger

Higgs Differential : A. Kumar

<u>H→bb : Results</u>

- CMS considered ggF only as signal, rest production modes are considered as background.
- → ATLAS considered inclusive production with no attempt to reject non-ggF contributions

Measurement is dominated by statistical uncertainties

- HJ-MINLO is used for prediction
- Also compared with NNLO prediction from LHCHXSWG

CMS has 2.6*\sigma* excess in highest pT bin which is reduced to 1.8 sigma when all bins considered simultaneously

- POWHEG+MINLO is used for ggF prediction
 - POWHEG-Box V2 for VBF and $gg \rightarrow VH$, ttH
- POWHEG-Box V2 + MINLO for $qq \rightarrow VH$

Higgs Differential : A. Kumar

<u>H→4l Overview</u>

→ Clean signature with 4 identified & isolated leptons \rightarrow high S/B

- → Backgrounds :
 - Irreducible : $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$ estimated from MC
 - Reducible : Z+X estimated from data
- → Signal extraction :
 - No event categorization and kinematic discriminant
 - Simultaneous fit for m_{41} in all final states.
 - Unfolding embedded in the likelihood fit

- → Backgrounds :
 - Irreducible : $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$ estimated from MC with norm from data in m_{μ} bands
- → Signal extraction :
 - •
- Simultaneous fit for m₄₁ in all final states.
- MATRIX unfolding (embedded in likelihood) is used without regularization

Higgs Differential : A. Kumar

- → Differential cross section measured for pT(H), |y(H)|, N(jet), pT(jet)
- → Compared to predictions from POWHEG and NNLOPS
- → Dominant systematics are the experimental ones. Theoretical uncertainties are sub-dominant
- → fiducial volume is defined to match closely the reconstruction level selection

 $\sigma_{\rm fid} = 2.84^{+0.34}_{-0.31} = 2.84^{+0.23}_{-0.22} \,(\text{stat})^{+0.26}_{-0.21} \,(\text{syst}) \,\text{fb}$

SM Expectation:

2.84 ± 0.15 fb

Results : ATLAS

- → ATLAS measured 20 observables :
 - Higgs system : pT(4l), Y(4l), m12, m34, 5 final state angular variables
 - Jet Variables : N_Jets, N_bjets, pT(j1), pT(j2), mjj, angular separation (φ,η)
 - Higgs + 1/2 jets : pT and invariant mass
 - Double Differential : 8 variables

All the results are compatible with SM

Double differential and Pseudo-Observable interpretation

 $m_{24} \rightarrow off-shell Z$

interactions between H, Z and right/left handed leptons \rightarrow 4 scenarios considered

Contact terms have same Lorentz structure as SM \rightarrow only affects invariant mass distributions

flavour-universal contact terms

Higgs Differential : A. Kumar

•

•

PANIC 2021

Results are compatible with SM

Constraints on Yukawa Coupling

- Higgs to t-quark and b-quark couplings have been established directly by both experiments but they can also be indirectly constrained using pT(H) spectrum
 - More important for Higgs to charm-quark

coupling.

Results are compatible with SM

- The fiducial cross section is parameterised as a function of the k_c and k_b values in each measured bin of pT(H).
- Theoretical uncertainties for gg and qq induced processes are recalculated for pT(H) < 10 GeV because of large variations seen there.

Three scenarios considered in the order of increasing the model dependency :

- 1. only pT(H) shape is used to constrain k_c and k_h
- 2. the predicted cross-section is used
- both the prediction of the pT(H) differential cross section and the modification to the branching ratio due to the k_c and k_b values are used.

Higgs Differential : A. Kumar

$$H \rightarrow \gamma \gamma$$

<u>H→yy : Overview</u>

- High resolution channel with small branching ratio (~0.2%)
- Look for narrow resonance peak over the smoothly falling di-photon background
- Signal is extracted by parameterised fit of $m_{\mu\nu}$ distribution for each category.

Higgs Differential : A. Kumar

<u>H→yy : Fiducial differential Xsec</u>

- The reconstruction level data yields are unfolded to particle level using bin-by-bin correction factor
- Matrix unfolding is used a check

- 6 variables are used for measurement covering Higgs kinematics, exploration of CP effects.
- Results are interpreted also in EFT framework

$$\sigma_{\rm fid} = \frac{N^{\rm sig}}{c_{\rm fid}\mathcal{L}_{\rm int}} \qquad \left(\frac{{\rm d}\sigma}{{\rm d}x}\right)_i = \frac{N_i^{\rm sig}}{c_{\rm fid,i}\,\Delta x_i\mathcal{L}_{\rm int}},$$

 $C_{\rm fid}$ = correction factor for detector efficiency and resolution, estimated using signal MC $\Delta \chi_{\rm i}$ = bin width for ith bin for variable χ

·	actinition
v .	· ducial Des
Objects	Fiducial definition Fiduce
Photons	$ \eta < 2.37$ (excluding 1.37 < $ \eta < 1.52$), $\sum p_{\rm T}^i / p_{\rm T}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30$ GeV, $ y < 4.4$
Diphoton	$N_{\gamma} \ge 2$, 105 GeV < $m_{\gamma\gamma}$ < 160 GeV, $p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.35$, $p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

 $\sigma_{\rm fid} = 65.2 \pm 4.5 \,({\rm stat.}) \pm 5.6 \,({\rm syst.}) \pm 0.3 \,({\rm theo.}) \,{\rm fb}$

$$\sigma_{_{\rm SM}}$$
 = 63.6 ± 3.3 fb

Higgs Differential : A. Kumar

$H \rightarrow \gamma \gamma$: Results

- The distributions are compared with latest MC predictions
- Δφ_{jj} variable is sensitive to CP properties of Higgs boson.

- pT distribution is measured until 350 GeV in order to probe the top-quark mass effects on gluon loop
- Finer binning at low pT in order to probe the charm-quark Yukawa couplings

Higgs Differential : A. Kumar

$H \rightarrow \gamma \gamma$: EFT Interpretation

- Higgs-boson interactions are investigated following an effective field theory (EFT) approach.
 - o additional CP-even and CP-odd interactions can change the Higgs kinematics and associated jet multiplicity from SM
- Two different EFT basis were used:
 - SILH basis for Higgs effective Lagrangian
 - The Warsaw basis for SMEFT Lagrangian

- $\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum_{i,D} \underbrace{\frac{c_i^{(D)}}{\Lambda^{D-4}}}_{i} \mathscr{O}_i^{(D)}$ Wilson coefficients
- 1D and 2D limits are obtained by fitting one or two Wilson coefficients at a time and keeping the others at 0.

 $\mathcal{L}_{\text{eff}}^{\text{SILH}} \supset \qquad \overline{c}_g O_g + \overline{c}_\gamma O_\gamma + \overline{c}_{HW} O_{HW} + \overline{c}_{HB} O_{HB}$ $+ \widetilde{c}_g \widetilde{O}_g + \widetilde{c}_\gamma \widetilde{O}_\gamma + \widetilde{c}_{HW} \widetilde{O}_{HW} + \widetilde{c}_{HB} \widetilde{O}_{HB}$

$$\mathcal{L}_{\text{eff}}^{\text{SMEFT}} \supset \qquad \overline{C}_{HG}O'_{g} + \overline{C}_{HW}O'_{HW} + \overline{C}_{HB}O'_{HB} + \overline{C}_{HWB}O'_{HWB} \\ + \widetilde{C}_{HG}\widetilde{O}'_{g} + \widetilde{C}_{HW}\widetilde{O}'_{HW} + \widetilde{C}_{HB}\widetilde{O}'_{HB} + \widetilde{C}_{HWB}\widetilde{O}'_{HWB}$$

Coefficient	Observed 95% CL limit	Expected 95% CL limit	Coefficient	95% CL, interference-only terms	\mid 95% CL, interference and quadratic terms
ī	$[-0.26, 0.26] \times 10^{-4}$	$\frac{1}{[-0.25, 0.25] \cup [-4.7, -4.3] \times 10^{-4}}$	\overline{C}_{HG}	$[-4.2, 4.8] \times 10^{-4}$	$[-6.1, 4.7] \times 10^{-4}$
c_g	$[0.20, 0.20] \times 10^{-4}$	$[0.20, 0.20] \cup [-4.1, -4.0] \times 10^{-4}$	C_{HG}	$[-2.1, 1.6] \times 10^{-2}$	$[-1.5, 1.4] \times 10^{-3}$
c_g	$[-1.3, 1.1] \times 10^{-1}$	$[-1.1, 1.1] \times 10^{-1}$	$\underset{\sim}{C}_{HW}$	$[-8,2,7.4] \times 10^{-4}$	$[-8.3, 8.3] \times 10^{-4}$
\overline{c}_{HW}	$[-2.5, 2.2] \times 10^{-2}$	$[-3.0, 3.0] imes 10^{-2}$	C_{HW}	[-0.26, 0.33]	$[-3.7, 3.7] \times 10^{-3}$
Ĩ	$[-6.5, 6.3] \times 10^{-2}$	$[-7.0, 7.0] \times 10^{-2}$	C_{HB}	$[-2.4, 2.3] \times 10^{-4}$	$[-2.4, 2.4] \times 10^{-4}$
	$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \times 10^{-4}$	$\begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix} \times 10^{-4}$	C_{HB}	[-13.0, 14.0]	$[-1.2, 1.1] \times 10^{-3}$
c_{γ}	$[-1.1, 1.1] \times 10$	$[-1.0, 1.2] \times 10$	C_{HWB}	$[-4.0, 4.4] \times 10^{-1}$	$[-4.2, 4.2] \times 10^{-1}$
c_{γ}	$[-2.8, 4.3] imes 10^{-4}$	$[-2.9, 3.8] imes 10^{-4}$	C_{HWB}	[-11.1,6.5]	$[-2.0, 2.0] \times 10^{-3}$

Higgs Differential : A. Kumar

• $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma \gamma$ are combined for full Run-II luminosity.

- Corrections are applied to individual channel yields accounting for luminosity, detector effects, fiducial acceptances, and branching fractions.
- The value of the Higgs boson mass is assumed to be 125.09 GeV
- The gluon fusion (ggF) distributions are obtained using POWHEG NNLOPS

CMS Experiment at LHC, CERN Data recorded: Sat Jul 21 23:51:56 2018 CEST Run/Event: 320023 / 82136704 Lumi section: 65 Orbit/Crossing: 16947668 / 2247

$H \rightarrow WW$

Higgs Differential : A. Kumar

<u>H→WW Overview</u>

- → With second Highest B.R. for Higgs at 125 GeV, H→WW is an important channel for measurement of Higgs boson properties.
- → Fully leptonic decay with different flavour leptons
- → Main backgrounds :
 - WW \rightarrow estimated from MC
 - Top → shape from MC and norm from control region in data
 - non-prompt leptons \rightarrow data-driven

Signal Extraction :

- → 2D template fit of m^{II} : m_{τ} in bins of pT_{H} and jets
- Events are further categorized using lepton flavour and pT
- → Unfolding embedded into likelihood function
- → Regularization applied for pT_H measurement → added as a penalty term in likelihood

Higgs Differential : A. Kumar

<u>H→WW : Fiducial and Differential Xsec</u>

• We measured differential & fiducial cross-sections in $H \rightarrow WW$ with full Run-II data (137 fb⁻¹)

HIG-19-002

- The variables considered for measurement are : transverse momentum of Higgs (\mathbf{p}_{τ}^{H}) , number of jets (\mathbf{N}_{iets})
- Only e-mu final states with ggH production are considered in order to reduce the backgrounds.
- Similar strategy as previously discussed is also followed for this analysis.

р _т ^н (GeV)	N _{jets}
0 - 20	= 0
20 - 45	= 1
45 - 80	= 2
80 - 120	= 3
120 - 200	>= 4
>= 200	

Binning scheme

	Fiducial region definition
Lepton origin	Direct decay product of $H \rightarrow WW$
Lepton flavor and charge	Different flavor, opposite charge
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{\ell_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\mathrm{T}}^{\ell_2} > 13 \mathrm{GeV}$
Pseudorapidity of the leptons	$ \eta < 2.5$
Dilepton mass	$m^{\ell\ell} > 12 \mathrm{GeV}$
Dilepton transverse momentum	$p_{\mathrm{T}}^{\ell\ell} > 30\mathrm{GeV}$
Transverse mass of trailing lepton	$m_{\mathrm{T}}^{\ell_2} > 30 \mathrm{GeV}$
Higgs transverse mass	$m_{\rm T}^{\rm H} > 60 { m GeV}$

$$\sigma^{\mathrm{SM}} = 82.5 \pm 4.2 \,\mathrm{fb}$$

Higgs Differential : A. Kumar

<u>H→WW : Fiducial and Differential Xsec</u>

 $\mu^{\text{fid}} = 1.05 \pm 0.12 \ (\pm 0.05 \ (\text{stat}) \pm 0.07 \ (\text{exp}) \pm 0.01 \ (\text{signal}) \pm 0.07 \ (\text{bkg}) \pm 0.03 \ (\text{lumi}) \),$

 $\sigma^{\rm fid} = 86.5 \pm 9.5 \, {\rm fb}.$

- Uncertainties are of the same order as di-photon analyses in #jets and similar in high p₋^H
- More variables can be added for next iteration of analysis
- Binning in low pTH region are determined by p_r^{miss} resolution

 $N_{\rm iet}$

Higgs Differential : A. Kumar

Summary & Outlook

- → Higgs Physics is in precision measurement "era" and Run-II data gives great opportunity to probe it.
- → Most of the inclusive measurements are already systematic limited with partial Run-II dataset.

- → First Differential results from $H \rightarrow \tau \tau$ channel are presented.
- → Higgs boson is being used as a tool to look for Physics BSM.
- → All analyses are being updated with full Run-II luminosity
- → Preparing for Run-3 \rightarrow can go differential per production mode.

Stay Tuned !!

Thanks to Dept of Energy, USA for the funding and support

$H \rightarrow 4I$: Fiducial Region def.

ATLAS

Leptons and jets	
Leptons	$p_{\rm T} > 5 { m GeV}, \eta < 2.7$
Jets	$p_{\rm T} > 30$ GeV, $ y < 4.4$
Lepton selection and pairing	
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm ~GeV}$
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Event selection (at most one quadruplet per event)	
Mass requirements	50 GeV < m_{12} < 106 GeV and 12 GeV < m_{34} < 115 GeV
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$
If extra lepton with $p_{\rm T} > 12 {\rm ~GeV}$	Quadruplet with largest matrix element value

CMS

· · · · · · · · · · · · · · ·	
Lepton kinematics and isolation	
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 { m GeV}$
Next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10 {\rm GeV}$
Additional electrons (muons) $p_{\rm T}$	$p_{\mathrm{T}} > 7(5) \mathrm{GeV}$
Pseudorapidity of electrons (muons)	$ \eta < 2.5$ (2.4)
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$
Event topology	
Existence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria above
Inv. mass of the Z ₁ candidate	$40 < m_{Z_1} < 120 \text{GeV}$
Inv. mass of the Z ₂ candidate	$12 < m_{Z_2} < 120 \text{GeV}$
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4 \mathrm{GeV}$
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{\rm GeV}$

H→4I : Correlation Matrices

<u>Results H→4I : ATLAS</u>

Not all variables are shown here.

H→WW : Correlation Matrices

Correlations among the unfolded signal strength modifiers

$H \rightarrow \gamma \gamma$: Fiducial Region def.

CMS

ATLAS

Objects	Fiducial definition
Photons	$ \eta < 2.37$ (excluding 1.37 < $ \eta < 1.52$), $\sum p_{\rm T}^i / p_{\rm T}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30$ GeV, $ y < 4.4$
Diphoton	$N_{\gamma} \ge 2$, 105 GeV < $m_{\gamma\gamma}$ < 160 GeV, $p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.35$, $p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

• The sum on p_T^i is extended to all charged particles within $\Delta R = 0.2$ of the photon

Phase space region	Observable Bin boundaries									
	$p_{\mathrm{T}}^{\gamma\gamma}~(\mathrm{GeV})$	0	15	30	45	80	120	200	350	x
Destin	$N_{ m jet}$	0	1	2	3	4	∞			
Baseline $p^{\gamma_1}/m > 1/3$	$ y^{\gamma\gamma} $	0	0.15	0.3	0.6	0.9	2.5			
$p_{\rm T} / m_{\gamma\gamma} > 1/3$	$ \cos(\theta^*) $	0	0.1	0.25	0.35	0.55	1			
$ \mu_{\rm T} = 25$	$p_{\mathrm{T}}^{\gamma\gamma}$ (GeV), $N_{\mathrm{jet}}=0$	0	20	60	∞					
$ \eta' < 2.5$ $ so^{\gamma} < 10 \text{GeV}$	$p_{\mathrm{T}}^{\gamma\gamma}$ (GeV), $N_{\mathrm{jet}}=1$	0	60	120	∞					
loogen < 10 Gev	$p_{\rm T}^{\gamma\gamma}$ (GeV), $N_{\rm jet}>1$	0	150	300	∞					
	$N_{ m jet}^{ m b}$	0	1	2	∞					
	$N_{ m lepton}$	0	1	2	∞					
	$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	0	100	200	∞					
1-jet	$p_{\mathrm{T}}^{j_1}~(\mathrm{GeV})$	0	45	70	110	200	∞			
Baseline $+ \ge 1$ jet	$ y^{j_1} $	0	0.5	1.2	2	2.5				
$p_{\rm T}^j > 30 {\rm GeV}, \eta^j < 2.5$	$ \Delta \phi^{\gamma\gamma, j_1} $	0	2.6	2.9	3.03	π				
	$ \Delta y^{\gamma\gamma,j_1} $	0	0.6	1.2	1.9	∞				
	$p_{\mathrm{T}}^{j_2}~(\mathrm{GeV})$	0	45	90	∞					
2-jets	$ y^{j_2} $	0	1.2	2.5	4.7					
Baseline $+ \ge 2$ jets	$ \Delta \phi^{j_1,j_2} $	0	0.9	1.8	π					
$p_{\Gamma}^{j} > 30 \text{GeV}, \eta^{j} < 4.7$	$ \Delta \phi^{\gamma\gamma, j_1 j_2} $	0	2.9	3.05	π					
	$ \overline{\eta}_{j_1 j_2} - \eta_{\gamma \gamma} $	0	0.5	1.2	∞					
	$m^{j_1 j_2}$ (GeV)	0	100	150	450	1000	∞			
	$ \Delta\eta^{j_1,j_2} $	0	1.6	4.3	∞					
VBF-enriched	$p_{\mathrm{T}}^{j_2}~(\mathrm{GeV})$	0	45	90	∞					
2-jets + $ \Delta \eta^{j_1, j_2} > 3.5, m^{j_1 j_2} > 200 \text{GeV}$	$ \Delta \phi^{j_1,j_2} $	0	0.9	1.8	π					
	$ \Delta \phi^{\gamma\gamma, j_1 j_2} $	0	2.9	3.05	π					

<u>H→ττ</u> : Fiducial region

CMS

• $e\tau_h (\mu \tau_h)$:

- Electron (muon) $p_T > 25(20)$ GeV and $|\eta| < 2.1$
- Visible $\tau_h p_T > 30 \text{ GeV}$ and $|\eta| < 2.3$
- $m(e/\mu, \vec{p}_T^{miss}) < 50 \text{ GeV}$

• $\tau_h \tau_h$:

- Visible $\tau_h p_T > 40$ GeV and $|\eta| < 2.1$
- At least one jet with p_T > 30 GeV

• eµ:

- Leading (subleading) lepton $p_T > 24(15)$ GeV
- Lepton $|\eta| < 2.4$
- $m_T(e\mu, \vec{p}_T^{miss}) < 60 \text{ GeV}$

Momenta of photons radiated within $\Delta R = 0.1$ of a lepton are added to the lepton's momentum

Differential vs STXS

- More information can be extracted from fiducial differential cross section measurements.
- Differential: measure cross section in bins of some observables (pT H, #jets, ...)
- **Fiducial:** extrapolate the measurement to a restricted phase space that matches as closely as possible the experimental selections.
- Reduce model dependence avoiding the extrapolation to the full phase space
- Long measurement lifetime and easy comparison with different theories
- Limited to 1-2 variables at the same time
- Hard to combine different channels without extrapolating to the full phase space
- Non trivial to include complex variables (e.g. DNNs) in the fiducial phase space
- Simplified Template Cross Sections complementary to differential measurements
 - Measure cross sections in pre-defined template bins per production mode.
- No fiducial phase space (only $|y_{H}| < 2.5$)
- possible to combine different decay channels
- Larger extrapolation uncertainties

