

08-09-2021

PANIC 2021

Status of single top measurements

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Introduction: top and single top physics

- The top quark is the most massive particle in the SM.
 - Highest Yukawa coupling to the Higgs boson.
 - Due to its large mass, decays almost always before hadronising.
- It has large interest at LHC physics due to:
 - Multiple links with BSM proposals (e.g. SUSY extensions such as stops).
 - Large presence of its production processes (above all pair production) due to their large cross section.
- Top quark production occurs in two different ways: top pair (QCD) and **single top** (EW):
 - Allow to probe and measure V_{tb} .
 - Top quark is polarised, because of the tWb vertex.

08-09-2021

Polarisation measurement and bounds on the tWb dipole operator

13 TeV, 139 fb⁻¹, t-channel

Event selection:

- One single central, isolated and energetic (>30 GeV) lepton, 20000 Post-Fit either muon or electron.
- Looser leptons (in terms of p_{τ} and other ID criteria) are vetoed to reduce contribution from backgrounds.
- Exactly two energetic jets, of which one must be b-tagged.
- Significant p_T^{miss} (> 35 GeV).
- Cuts to avoid multijet background on the $m_T(l, p_T^{miss})$ and $p_T(l)$.
- Further S/B enhancement on the pseudorapidity and invariant mass of the top quark and other systems, as well as the scalar sum of the p_T of all final-state objects.
- **First aim**: polarisation vector of single top/antitop quarks.
- The direction of the charged lepton in the top quark rest frame is obtained, and with it, the values of $\cos \theta_{i'}$.
- With it, a fit over 16 signal region bins depending on the value in the octant vector for both quark (Q₊) and antiquark (Q₋), and 4 control region bins (for ttbar and W+jets) is done.
- Protos (LO generator) is used to obtain the projection of the joint PDF of the fully differential angular decay distribution onto the Q variable.
- Result compatible with the prediction at NLO from Powheg+Pythia8.

08-09-2021

Polarisation measurement and bounds on the tWb dipole operator

13 TeV, 139 fb⁻¹, t-channel

- Second aim: differential crosssection of angular observables
- D'Agostini's iterative Bayesian method is implemented using RooUnfold.
- Binning is optimised to get a stable unfolding. Bias introduced is checked to be negligible.
- Result in agreement with predictions at NLO & LO OCD from generators interfaced with Pythia8 and Herwig7.

best-fit value

- **Third aim**: establish bounds on O_{tW} coefficients C_{tW} (real part) and C_{itW} (imaginary part).
 - An EFT expression depending on both coefficients is used to do a fit over the $\cos \theta_{\rm b}$ and $\cos \theta_{\rm w}$ distributions.
 - Results are in good agreement with the SM prediction.

08-09-2021

Measurement of CKM matrix elements

13 TeV, 35.9 fb⁻¹, t-channel

• Event selection:

- One single central, isolated and energetic (>30 GeV) lepton, either muon or electron.
- At least two jets: either low- p_{T} ones (>20 GeV), or high- p_{T} jets (> 40 GeV).
- m_⊤(W)>50 GeV.
- Additional cut is imposed in the 3j2t region to enhance S/B ratio.

Category	Enriched in	Cross section \times branching fraction	Feynman diagram	
2j1t	$ST_{b,b}$	$\sigma_{t-ch,b}\mathcal{B}(t o Wb)$	1a	
3j1t	$ST_{b,q}, ST_{q,b}$	$\sigma_{t-ch,b}\mathcal{B}(t ightarrow Wq)$, $\sigma_{t-ch,q}\mathcal{B}(t ightarrow Wb)$	1b, 1c, 1d	
3j2t	$ST_{b,b}$	$\sigma_{t-\mathrm{ch},\mathrm{b}}\mathcal{B}(\mathrm{t} ightarrow\mathrm{Wb})$	1a	

200

35.9 fb⁻¹ (13 TeV)

+ ST ... (× 1000)

m^w [GeV]

m^w_T [GeV]

CMS

35.9 fb⁻¹ (13 TeV)

- **Strategy**: perform a maximum-likelihood fit on the 2j1t, 3j1t and 3j2t regions.
 - The signals are the t-ch. decay modes featuring different V_{tx} in their Feyman diagrams: $ST_{b,b}$, $ST_{b,q}$ and $St_{q,b}$.
- MVAs (BDT) are trained for each region, and its discriminant is used for the ML fit.
 - Previously, two ML fit are done to extract the QCD/multijet background normalisations in the 2j1t and 3j1t regions.

08-09-2021

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

100 بي

Data

GeV

60

50

Data / MC 8.0 ata / MC CMS

e + 2j1t

Measurement of CKM matrix elements

13 TeV, 35.9 fb⁻¹, t-channel

Phys. Lett. B 808 (2020) 135609

The results for the signal strengths of the $ST_{b,b}$ and the $ST_{q,b}$ + $ST_{b,q}$ are:

 $\mu_{\rm b} = 0.99 \pm 0.03 \,(\text{stat+prof}) \pm 0.12 \,(\text{nonprof})$

 $\mu_{
m sd}$ < 87 at 95% confidence level (CL),

- Through approximations and neglecting small contributions, the results can be interpreted in different contexts:
 - **SM case** (imposing unitarity; 95% CL):

 $|V_{tb}| > 0.970$ $|V_{td}|^2 + |V_{ts}|^2 < 0.057.$

- **BSM case 1** (the top quark decays as in the SM, but the CKM matrix is modified):

$$\begin{split} |V_{tb}| &= 0.988 \pm 0.027 \, (\text{stat+prof}) \pm 0.043 \, (\text{nonprof}) \\ |V_{td}|^2 + |V_{ts}|^2 &= 0.06 \pm 0.05 \, (\text{stat+prof}) \, {}^{+0.04}_{-0.03} \, (\text{nonprof}). \end{split}$$

- **BSM case 2** (the top quark decays in new unknown ways):

 $\begin{aligned} |V_{tb}| &= 0.988 \pm 0.011 \text{ (stat+prof)} \pm 0.021 \text{ (nonprof)} \\ |V_{td}|^2 + |V_{ts}|^2 &= 0.06 \pm 0.05 \text{ (stat+prof)} \pm 0.04 \text{ (nonprof)} \\ \frac{\Gamma_t^{obs}}{\Gamma_t} &= 0.99 \pm 0.42 \text{ (stat+prof)} \pm 0.03 \text{ (nonprof)}. \end{aligned}$

08-09-2021

Inclusive measurement of tZq production

13 TeV, 139 fb⁻¹, tZq process

JHEP 07 (2020) 124

Common selections							
Exactly 3 leptons (e or μ) with $ \eta < 2.5$ $p_{\rm T}(\ell_1) > 28 \text{GeV}, p_{\rm T}(\ell_2) > 20 \text{GeV}, p_{\rm T}(\ell_3) > 20 \text{GeV}$ $p_{\rm T}(\text{jet}) > 35 \text{GeV}$							
SR 2j1b	CR diboson 2j0b	CR tī 2j1b	CR tīZ 3j2b				
$\geq 1 \text{ OSSF pair}$ $\ell_{\ell\ell} - m_Z < 10 \text{ GeV}$ $2 \text{ jets, } \eta < 4.5$ $1 \text{ b-jet, } \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ 2 jets, $ \eta < 4.5$ 0 <i>b</i> -jets	\geq 1 OSDF pair No OSSF pair 2 jets, $ \eta < 4.5$ 1 <i>b</i> -jet, $ \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ $3 \text{ jets, } \eta < 4.5$ $2 \text{ b-jets, } \eta < 2.5$				
SR 3j1b	CR diboson 3j0b	CR tī 3j1b	CR $t\bar{t}Z$ 4j2b				
$\geq 1 \text{ OSSF pair}$ $e_{\ell\ell} - m_Z < 10 \text{ GeV}$ 3 jets, $ \eta < 4.5$ 1 <i>b</i> -jet, $ \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ 3 jets, $ \eta < 4.5$ 0 <i>b</i> -jets	≥ 1 OSDF pair No OSSF pair 3 jets, η < 4.5 1 <i>b</i> -jet, η < 2.5	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ $4 \text{ jets, } \eta < 4.5$ $2 b \text{-jets, } \eta < 2.5$				

Strategy:

- Categorisation of events depending on the number of jets, and number of those b-tagged. Then, a maximum-likelihood fit is used to extract the signal.
- For the signal regions (2j1b, 3j1b), two neural networks are trained, and their discriminant are used in the fit.
- For the control regions various observables are used:

2j0b, 3j0b \rightarrow m_T(l, p_T^{miss}).

2j1b, 3j1b \rightarrow number of events (one bin).

3j2b, 4j2b \rightarrow the SR's NN discriminant are used.

08-09-2021

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

ATLAS

Inclusive measurement of tZq production

13 TeV, 139 fb⁻¹, tZq process

$$\sigma_{\rm obs.} = 97 \pm 13 (\text{stat.}) \pm 7 (\text{syst.}) \text{fb}$$

$$\sigma_{
m pred.} = 102^{+5}_{-2}\,{
m fb}\,$$
 JHEP 2014, 79 (2014)

Uncertainty source	$\Delta\sigma/\sigma$ [%]	
Prompt-lepton background modelling and normalisation	3.3	
Jets and $E_{\rm T}^{\rm miss}$ reconstruction and calibration	2.0	
Lepton reconstruction and calibration	2.0	
Luminosity	1.7	
Non-prompt-lepton background modelling	1.6	
Pile-up modelling	1.2	
MC statistics	1.0	R
tZq modelling (QCD radiation)	0.8	O
tZq modelling (PDF)	0.7	
Jet flavour tagging	0.4	
Total systematic uncertainty	7.0	
Data statistics	12.6	
$t\bar{t} + tW$ and $Z + jets$ normalisation	2.1	
Total statistical uncertainty	12.9	

08-09-2021

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

Data / Pred.

40

\$

Š.

Data / Pred.

Voc.

Ş

8

Inclusive and differential measurement of tZq production

13 TeV, 138 fb⁻¹, tZq channel

Event selection

- Three central and energetic leptons (p_T> 25, 15, 10 GeV), two of them should form an OSSF pair with invariant mass compatible with that of a Z boson.
- At least two energetic jets (p_T> 25 GeV), of which at least one should be b tagged.
- Non-prompt backgrounds are estimated through data-driven methods.
- Inclusive measurement strategy
 - An MVA output is used to do a maximum-likelihood fit and extract the signal.
 - Control regions are defined to constrain the WZ and Zy backgrounds.
 - The inclusive, as well as the separated contributions per charge of the lepton coming from the top of the tZq process and its ratio are extracted.

$$\begin{split} \sigma_{tZq(\ell_t^+)} &= 62.2 \stackrel{+5.9}{_{-5.7}} (\text{stat}) \stackrel{+4.4}{_{-3.7}} (\text{syst}) \text{ fb} \\ \sigma_{\overline{t}Zq(\ell_t^-)} &= 26.1 \stackrel{+4.8}{_{-4.6}} (\text{stat}) \stackrel{+3.0}{_{-2.8}} (\text{syst}) \text{ fb} \\ R &= 2.37 \stackrel{+0.56}{_{-0.42}} (\text{stat}) \stackrel{+0.27}{_{-0.13}} (\text{syst}) \,. \end{split}$$

08-09-2021

Inclusive and differential measurement of tZq production

13 TeV, 138 fb⁻¹, tZq channel

Differential measurement strategy

- An MVA output is used per bin of particle (or parton) level to do a maximum-likelihood fit and extract the signal and perform the unfolding in one step.
- Control regions are defined as in the inclusive measurement to constrain background normalisations.
- Results are later normalised to the fiducial cross section.
- From the differential distribution of the top quark polarisation angle, the top quark spin asymmetry is also measured.
- Results are in overall agreement with SM expectations.

$$\cos(\theta_{\text{pol}}^{\star}) = \frac{\vec{p}(q'^{\star}) \cdot \vec{p}(\ell_{\text{t}}^{\star})}{|\vec{p}(q'^{\star})||\vec{p}(\ell_{\text{t}}^{\star})|} \qquad \qquad \frac{d\sigma}{d\cos(\theta_{\text{pol}}^{\star})} = \sigma_{\text{tZq}} \left(\frac{1}{2} + A_{\ell}\cos(\theta_{\text{pol}}^{\star})\right)$$

$$A_\ell = 0.58 \ ^{+0.15}_{-0.16}$$
 (stat) ± 0.06 (syst)

08-09-2021

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

Ξ

 $1/\sigma$

Measurement of tW production (semileptonic channel)

8 TeV, 20.2 fb⁻¹, tW channel

- Event selection:
 - One energetic (> 30 GeV), isolated and central electron or muon.
 - Veto of less energetic leptons (> 25 GeV).
 - $p_T^{miss} > 30 \text{ GeV}.$
 - m_T(W_L) > 50 GeV.
- Strategy:
 - Signal region: 3j1b.
 - A 2-dimensional discriminant is constructed with a neural network output in 65 GeV < $m(W_H)$ < 92.5 GeV and with the remaining $m(W_H)$ variable.

08-09-2021

Measurement of tW production (semileptonic channel) 8 TeV, 20.2 fb⁻¹, tW channel Eur. Phys. J. C 81 (2021) 720

• Result is in good agreement with expectations at NLO+NNLL:

 $\sigma_{\rm obs.} = 26 \pm 7 \mathrm{pb}$

 $\sigma_{\rm pred.} = 22.4 \pm 1.5 {\rm pb}$ Phys. Rev. D 60, 113006

08-09-2021

Measurement of tW production (semileptonic channel)

Sub. to JHEP, arXiv:2109.01706

Event selection:

- One energetic, isolated and central electron (> 30 GeV) or muon (> 26 GeV).
- Veto of less energetic leptons (> 10 GeV muons, > 20 GeV electrons).
- At least two and no more than four central and energetic jets should be in the events.
- Exactly one of the jets must be b-tagged.
- Strategy:
 - Events are categorised into separate regions depending on the number of jets.
 - Signal region: events with three jets.
 - Control regions: events with two jets (W+jets background CR) and events with four jets (ttbar CR).
 - QCD/multijet background estimated from a dedicated region by inverting lepton isolation requirement.
 - W+jets background estimated by extrapolating to signal region the ratio with the QCD bkg. in the 2j0b region.
 - Two (for muon and for electron) MVA (BDTs) are trained in the signal region to discriminate.

Variable Description Mass of the reconstructed Wboson decaying hadronically Invariant mass of the b-tagged jet and sub-leading non b-tagged jet Angular separation between the two non b-tagged jets Angular separation between the reconstructed leptonic Wboson and leading non b-tagged jet Transverse momentum of the selected lepton Energy of the two non b-tagged jets system Angular separation between the b-tagged jet and the selected lepton Transverse momentum of the system made of the three jets, lepton and $p_{\rm T}^{\rm miss}$

Measurement of tW production (semileptonic channel)

13 TeV, 35.9 fb⁻¹, tW channel

Source

Pileup

 h_{damp}

08-09-2021

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

CMS

Summary

- The latest measurements from single top processes have been made in the **t** and **tW channels** as well as in the **tZq process**.
 - The t-channel has been used to measure the top quark polarisation vector, differential cross sections depending on angular observables and also to put bounds on the tWb operator.
 - This production mode has served to measure the top quark CKM elements in different contextes (both SM and BSM).
 - A measurement in the tZq process has been made, with a final inclusive cross section with a ~15% relative uncertainty by ATLAS...
 - ...and another one by CMS with ~12% relative uncertainty, that also measured differentially the process depending on various observables, and measured the top quark spin asymmetry, everything in overall agreement with SM expectations.
 - The tW channel in its semileptonic decay mode has been measured inclusively at 13 TeV and 8 TeV by CMS and ATLAS with 15% and 27% relative uncertainty respectively.

08-09-2021

Thanks for your attention

PANIC 2021

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

08-09-2021

Víctor Rodríguez Bouza (on behalf of the ATLAS and CMS collaborations)

Instituto Universitario de Ciencias Tecnologías Espaciales de Asturia