V+jets/+heavy flavour production at the LHC

On behalf of the ATLAS & CMS Collaborations

Particles and Nuclei International Conference – September 2021

Introduction

- High rates of W, Z production at LHC
- Clean signal with leptonic decays
- W and Z + jets are standard candles
- Very precise measurements to test SM
- Irreducible background to BSM and Higgs analyses
- V + jets measurements test perturbative QCD (pQCD)
- Z + b/c jet sensitive to quark PDF
- Z + bb jets sensitive to gluon splitting

Recent results

- Z + jets measurements at 13 TeV
 - ATLAS Collinear Z + jets (ATLAS-CONF-2021-033) *
 - CMS Z/ γ + jets (<u>JHEP 05 (2021) 285</u>) *
 - CMS Azimuthal correlations in Z + jets (<u>CMS-PAS-SMP-21-003</u>) *
 - CMS Z + jets (<u>CMS-PAS-SMP-19-009</u>) *
 - CMS Precision Z invisible width (<u>CMS-PAS-SMP-18-014</u>) *
 - CMS Double parton scattering using Z + jets (<u>CMS-SMP-20-009</u>)* in backup
- V + heavy flavour measurements at 13 TeV
 - ATLAS Z + 1 or 2 b jets (*JHEP 07 (2020) 44*)
 - CMS Z + 1 or 2 b jets (<u>CMS-PAS-SMP-20-015</u>) *

* Results released in 2021

- Probing for real Z emission as FSR from quark
- Measure Z production with high p_{T} jets
- Study kinematics between Z and closest jet
- Full run 2 dataset: 139 fb⁻¹
- Z($\rightarrow ee, \mu\mu$) + jets
- jet $p_{\rm T}$ > 100 GeV, |y| < 2.5
- $\Delta R = \sqrt{\Delta y^2 + \Delta \phi^2}$
- Cross sections in different phase spaces:
 - High p_{T} : lead jet p_{T} > 500 GeV
 - High scalar sum p_{T} of jets: $S_{T} > 600 \text{ GeV}$

Collinear and **back-to-back** Z emission

ATLAS-CONF-2021-033

PANIC2021: 2021-09-05

Alexandre Laurier - Carleton University

Collinear Z + jets

- Measure real collinear Z emission from jets
- Different lead jet *p*^T regions:
 - $p_{T}(jet) > 300 \text{ GeV}$
 - $p_{T}(jet) > 500 \text{ GeV}$
- Partial run 2 dataset: 35.9 fb⁻¹
- Z($\rightarrow \mu\mu$) + jets
- jet $p_{\rm T}$ > 40 GeV, $|\eta| < 2.4$
- $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- 2 distinct populations:
 - Back-to-back near $\Delta R \approx \pi$
 - Collinear emission $\Delta R \leq 2.5$
- MC agreement w/ data

PANIC2021: 2021-09-05

 ΔR_{7}

3.5

 ΔR_{7}

3

Z + jets azimuthal correlations

- $\Delta \phi(Z, j_1)$ Mostly flat for $p_T(Z) < 10$ GeV: no correlation
- For p_T(Z) > 100 GeV: Z and jet back-to-back
- Important higher order $\underline{\mathbf{G}}$ ME contributions at low $\Delta \phi_{Z,jet1}$
- Z+2 jet @NLO generally performs better over Z+1jet @NLO
- Geneva includes MPI, helping agreement at low Z p_T
- MG5_aMC Z+2 jet

 @NLO (no MPI) agrees
 with Geneva at high
 Z p_T where MPI has
 little effect

¹⁰

- Double differential cross section: lead jet p_T against |y|
- Good agreement with N_{iets} up to 4 jets, due to matrix element

Precision Z invisible width: $Z \rightarrow \nu \nu$

Precision measurement of Z invisible decay width

invisible decay width

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z + jets) B(Z \to \nu \bar{\nu})}{\sigma(Z + jets) B(Z \to l\bar{l})} \Gamma(Z \to l\bar{l})$$

- First direct measurement of Z invisible width at hadron collider
- Partial run 2 dataset: 36.3 fb⁻¹
- Invisible width extracted from simultaneous likelihood fit to the jets + MET, ll + jets and l + jets regions

Z + b jets - ATLAS & CMS

JHEP 07 (2020) 44

• Test pCQD predictions and quark PDF in presence of heavy flavour jets

- Z ($\rightarrow ee, \mu\mu$) + b jets measurements
- Sensitive to gluon splitting and b quark parton distribution function (PDF)
- MC predictions sensitive to flavour number scheme (FNS) in PDF

ATLAS

- Partial run 2 dataset: 35.6 fb⁻¹
- $Z + \ge 1 \text{ or } \ge 2 \text{ b jets, b-jet } p_T > 20 \text{ GeV, } |y| < 2.5$
- b-jet tagger: \approx 70% efficiency
- Testing several MC predictions with 4 and 5 FNS: 5FNS includes b quark in PDF

CMS

- Full run 2 dataset: 137 fb⁻¹
- Z + \geq 1 or \geq 2 b jets, b-jet $p_{\rm T}$ > 30 GeV $|\eta|$ < 2.4
- b-jet tagger: \approx 50% efficiency (tight WP)

JHEP 07 (2020) 44

ATLAS

CMS

Fiducial selections

Kinematic variable	Acceptance cut	Objec	t	Selection
Lepton $p_{\rm T}$	$p_{\rm T} > 27 { m ~GeV}$	Dressed le	ptons	$p_{\rm T}$ (leading) > 35 GeV, $p_{\rm T}$ (subleading) > 25 GeV, $ \eta < 2.4$
I optop m	m < 25	Z bosc	n	$71 < M_{\ell\ell} < 111$
	$ \eta < 2.5$	Particle-lev	vel bjet	bhadron jet, $p_{ m T}>30{ m GeV}$, $ \eta <2.4$
$m_{\ell\ell}$	$m_{\ell\ell} = 91 \pm 15 \text{ GeV}$			
<i>b</i> -jet <i>p</i> _T	$p_{\rm T} > 20 \text{ GeV}$			
<i>b</i> -jet rapidity	y < 2.5			
<i>b</i> -jet–lepton angular distance	$\Delta R(b\text{-jet}, \ell) > 0.4$			

- Differences in fiducial selections will lead to different results and MC modelling
- See backup for details about the different MC generators used in both analysis

Conclusion

- Presented wide range of latest results of V+jets/+heavy flavour @ 13 TeV
- Several precision and extreme phase space measurements
- Run 2 statistics allows for extremely precise measurements allowing to better probe MC generator performances
- Generally, NLO generators in best agreement with data within uncertainties and Run 2 statistics

• LHC Run 3 will open the way for higher statistics, more precise measurements and new extreme phase spaces.

Backup

PANIC2021: 2021-09-05

Alexandre Laurier - Carleton University

Z + jets differential measurements

CMS-PAS-SMP-19-009

- MC Generators in agreement with data.
 MG @ NLO (Blue) performs better
 - MG @ NLO (Blue) performs better than LO and GENEVA

22

Z + b jets - ATLAS & CMS

MC Generators:

JHEP 07 (2020) 44

• ALPGEN+Py8 4FNS: v2.14, 5p@LO, 4FNS

ATLAS

- Sherpa 5FNS, v2.2.1, 2p@NLO, 4p@LO
- MG5_aMC (NLO): v2.6.2, 5FNS, 1p@NLO
- Sherpa 4FNS+5FNS: v2.2.7, 5FNS 2p@NLO, 3p@LO, combined with the Z+bb events from Sherpa Zbb
- ALPGEN+Py8, ALPGEN4FNS reweighed to NNPDF3.0lo PDF set
- MG5_aMC 5FNS (LO): v2.2.2, 4p@LO
- MG5_aMC Zbb 4FNS: v2.6.2, Z+2 (massive) b jets @NLO
- Sherpa Zbb: v2.2.7, 4FNS, Z + 2 (massive) b jets @ NLO in the ME

MC Generators (5FNS):

- MG5_aMC v2.3 NLO NNPDF 3.1, 2p@NLO w/ FxFx matching, CP5 event tune
- MG5_aMC v2.6 NLO NNPDF 3.0, 2p@NLO w/ FxFx matching, CUET8PM1 event tune
- MG5_aMC v2.2LO, NNPDF 3.1, 4p @ LO, CP5 event tune
- MG5_aMC v2.4 LO, NNPDF 3.0, 4p @ LO, CUET8PM1 event tune
- Sherpa v2.2 : 2p@NLO, 4p@LO

Z + b jets

JHEP 07 (2020) 44

• Testing several MC predictions with 4 and 5 FNS

Generator	$N_{\rm max}^{\rm partons}$		FNS	PDF	Parton				
	NLO	LO		set	Shower				
Z+jets (including $Z+b$ and $Z+bb$)									
Sherpa 5FNS (NLO)	2	4	5	NNPDF3.0nnlo	Sherpa				
Sherpa Fusing 4FNS+5FNS (NLO)	2	3	5 (*)	NNPDF3.0nnlo	Sherpa				
Alpgen + Py6 4FNS (LO)	-	5	4	CTEQ6L1	Рутніа v6.426				
Alpgen + Py6 (rew. NNPDF3.0lo)	-	5	4	NNPDF3.01o	Рутніа v6.426				
MGAMC + Py8 5FNS (LO)	-	4	5	NNPDF3.0nlo	Рутніа v8.186				
MGAMC + Py8 5FNS (NLO)	1	-	5	NNPDF3.0nnlo	Рутніа v8.186				
Z+ bb									
Sherpa Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Sherpa				
MGAMC + Py8 Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Рутніа v8.186				

CMS-PAS-SMP-20-015

Z + b jets

PANIC2021: 2021-09-05

Alexandre Laurier - Carleton University