



# Single boson production overview

Mario Pelliccioni Istituto Nazionale di Fisica Nucleare

on behalf of the CMS and ATLAS collaborations PANIC 2021

#### **General outlook**



2

# Inclusive isolated y

#### Mainly test for pQCD

```
Sensitive to gluon density in proton already at LO
```

|                                                                                    | Phase-space region                                                                                      |                              |                                            |                                            |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|
| Requirement on $E_{\rm T}^{\gamma}$                                                | $E_{\mathrm{T}}^{\gamma} > 125 \mathrm{GeV}$                                                            |                              |                                            |                                            |  |  |  |  |  |  |  |
| Isolation requirement                                                              | $E_{\mathrm{T}}^{\mathrm{iso}} < 4.2 \times 10^{-3} \times E_{\mathrm{T}}^{\gamma} + 4.8  \mathrm{GeV}$ |                              |                                            |                                            |  |  |  |  |  |  |  |
| Requirement on $ \eta^{\gamma} $                                                   | $ \eta^{\gamma}  < 0.6$                                                                                 | $0.6 <  \eta^\gamma  < 1.37$ | $1.56 < \left \eta^{\gamma}\right  < 1.81$ | $1.81 < \left \eta^{\gamma}\right  < 2.37$ |  |  |  |  |  |  |  |
| Number of events with $125 < E_{\rm T}^{\gamma} < 150~{\rm GeV} \label{eq:events}$ | 182754                                                                                                  | 248538                       | 74405                                      | 144713                                     |  |  |  |  |  |  |  |
| Number of events with $E_{\rm T}^{\gamma} > 150 {\rm ~GeV}$                        | 2030144                                                                                                 | 2696077                      | 814623                                     | 1471953                                    |  |  |  |  |  |  |  |



#### Inclusive isolated y





#### Two main production mechanisms (at LO)

Phase space selection accounts for that

#### Using the 2016 dataset (36 fb<sup>-1</sup>)









Fair description for  $\Delta \phi^{\gamma \text{-jet}}$ Difficulty in the description of high m<sub>jj</sub> region There are some interesting hints...



# Multiple probes



Important area for VBF and VBS studies

Also visible in W+jets

Prevalent in the fragmentation enriched sample in  $\gamma$ +jets

# Triple differential **x**+jets

#### Eur. Phys. J. C 79 (2019) 20

Main processes are quark-gluon Compton scattering and qq annihilation

Test of QCD and probe of gluon PDF





#### NLO calculations available for comparison

Data with low uncertainties in lower  $E_{\tau}$ regions, can allow to constrain/select **PDF** sets

#### Z differential cross section

Combined measurement in  $l^+l^-$  and neutrino channels

**Charged channel** 

Single lepton triggers with  $p_{\tau} > 24 \text{ GeV}$ 

Tighter offline selection (usually O(GeV))

Select opposite charge same-flavor leptons within

the tracking acceptance

Reject events with additional leptons with  $p_{\tau} > 10 \text{ GeV}$ 

Main backgrounds are tt (leptonic), WW, tW

#### **Neutral channel**

| Variable                                                                            | Selection                                                          | To suppress background from                                                     |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Electron veto                                                                       | $p_{\rm T}>10{\rm GeV},  \eta <2.5$                                | $\mathrm{Z} \to \ell\ell + \mathrm{jets},  \mathrm{W}(\ell\nu) + \mathrm{jets}$ |
| Muon veto                                                                           | $p_{\rm T} > 10 { m GeV},  \eta  < 2.4$                            | $\mathrm{Z} \to \ell\ell + \mathrm{jets},  \mathrm{W}(\ell\nu) + \mathrm{jets}$ |
| au veto                                                                             | $p_{\mathrm{T}} > 18\mathrm{GeV},  \eta  < 2.3$                    | $\mathrm{Z} \to \ell\ell + \mathrm{jets},  \mathrm{W}(\ell\nu) + \mathrm{jets}$ |
| Photon veto                                                                         | $p_{\rm T}>15{\rm GeV},  \eta <2.5$                                | $\gamma+\mathrm{jets}$                                                          |
| b jet veto                                                                          | ${\rm CSVv2} <\!\! 0.8484, p_{\rm T} > 20{\rm GeV},   \eta  < 2.4$ | Top quark                                                                       |
| $p_{\mathrm{T}}^{\mathrm{miss}}$                                                    | $>\!250{ m GeV}$                                                   | QCD multijet, top quark, $\mathbf{Z} \rightarrow \ell\ell + \mathrm{jets}$      |
| $\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{jet}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$ | >0.5 radians                                                       | QCD multijet                                                                    |
| Leading jet                                                                         | $p_{\rm T} > 100 {\rm GeV},   \eta  < 2.4$                         | All                                                                             |

## Z differential cross section

#### JHEP 12 (2019) 061



#### DY transverse momentum



PRD 102 (2020) 092012

Interest in rapidity, helicity, charge asymmetry, cross section

Test of QCD, PDF, V-A structure of EWK

Analysis in the leptonic channel with 2016 data



#### W boson production



Ratio (measured/prediction) of fiducial cross sections

# V+heavy flavor

Important for MC tuning

Major background in many BSM searches Probe of heavy quark PDF

Case study: **Z+charm** JHEP 04 (2021) 109

- Reconstruct Z in leptonic final states
- $p_{T,jet}$  > 30 GeV,  $|\eta(jet)|$  < 2.4 Measure using  $m_{sv}$  and c-tagger
- c-ID with hadronic decays of charm

#### See Alexander Laurier's talk for more 14 details!



2

3

m<sub>SV</sub> [GeV]

I/N dN/dm<sub>SV</sub> GeV<sup>-'</sup>

#### Z+charm



#### Z+charm



#### Systematic uncertainties, integrated over $p_{T}$

| Channel                                | QCD<br>(%) | PDF<br>(%) | c tag/mistag<br>(%) | JER<br>(%) | JES<br>(%) | Pileup<br>(%) | Top Pair<br>(%) | ID\Iso<br>(%) | L<br>(%) | MC stat.<br>(%) |
|----------------------------------------|------------|------------|---------------------|------------|------------|---------------|-----------------|---------------|----------|-----------------|
| $\mu\mu, p_{\rm T}^{\rm c~jet}$        | 5.5        | 0.5        | 4.2                 | 3.9        | 4.8        | 1.5           | 0.6             | 1.0           | 2.5      | 4.2             |
| $\mu\mu, p_{\mathrm{T}}^{\mathrm{Z}}$  | 1.9        | 0.5        | 4.2                 | 1.1        | 3.9        | 1.6           | 0.8             | 1.0           | 2.5      | 3.1             |
| $ee, p_{T}^{c jet}$                    | 6.4        | 0.6        | 4.2                 | 3.1        | 6.4        | 3.0           | 0.7             | 2.6           | 2.5      | 6.3             |
| $\mathrm{ee}, p_\mathrm{T}^\mathrm{Z}$ | 2.6        | 0.5        | 4.1                 | 1.1        | 4.8        | 1.8           | 0.6             | 2.6           | 2.5      | 3.8             |

Signal extracted from m<sub>sv</sub> template fits

Differential cross section measured in  $p_{\tau}$  of c-jet or Z

 $\sigma_{fid.meas} = 405.4 \pm 5.6 \text{(stat)} \pm 24.3 \text{(exp)} \pm 3.7 \text{(theo) pb}$  $\sigma_{theo} = 524.9 \pm 11.7 \text{(theo) pb}$ 

Hint at charm content of proton overestimate?

# Conclusions

- Single vector boson production remains an important test field for EWK and QCD at LHC
  - Test of high oder predictions
    - And in general MC tuning
  - Better understanding of backgrounds

for other areas

- High statistics and clean final states
  - $\rightarrow$  important probes in the foreseeable future

In general, predictions have reached an impressive agreement with data,

with a few areas where deeper understanding is needed



## Backup

#### Z+jets

Great interest for many reasons:

- QCD testing, Higgs physics, BSM searches
- Leptonic final state with  $p_{T,1/2} > 30/20 \text{ GeV}$  CMS-SMP-19-009

Used for properties, (differential) cross section, angular correlations



19

# Multidifferential Z+jets cross section

CMS-SMP-19-009



## Z+jets: multiplicity

CMS-SMP-21-003



Low  $p_{T}$ : low multiplicity with EWK Z emission tail High  $p_{T}$ : larger multiplicity, jets from higher QCD corrections

# Z+jets: azimuthal correlations

#### Probe to QCD in Z production

#### CMS-SMP-21-003

Small p<sub>T,Z</sub>: soft gluon radiation and non-perturbativity
 High p<sub>T,Z</sub>: Z+jets full QCD contributions



# Z+jets: azimuthal correlations

CMS-SMP-21-003



Correlation strongly dependent on Z  $\rm p_{T}$  Good agreement with prediction accounting for MPI

# Z+collinear jet

Z emission from quark at NLO proportional to  $\alpha_S \ln^2 \frac{p_{T,j}}{(m_z)}$ Large production for small angles

- Z leptonic decays
- high-p<sub>T</sub> region with p<sub>T,jet</sub> > 500 GeV Discriminant through jet-Z angular separation



#### Z+collinear jet





#### Z + b-jets

#### CMS-SMP-20-015

| _                                 | ×10 <sup>-3</sup> CMS Prelin            | ninary                                                                                                                                       | 137.1 fb <sup>-1</sup> (13 TeV        | )                          |                                              |                |        |          |                    |                            |                 |              |                    |   |
|-----------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|----------------------------------------------|----------------|--------|----------|--------------------|----------------------------|-----------------|--------------|--------------------|---|
| GeV                               | 25                                      | Data<br>MG5_aMC (NLO, 1                                                                                                                      | NNPDF 3.1, CP5)                       |                            |                                              |                |        |          |                    |                            |                 |              |                    |   |
| jet                               |                                         | MG5_aMC (NLO, N<br>MG5_aMC (LO, N)                                                                                                           | NPDF 3.1, CP5)                        |                            |                                              |                |        |          | $Z + \geq$         | $Z + \geq 1 \text{ b jet}$ |                 |              | $Z + \ge 2 b$ jets |   |
| o ping b                          | 20                                      | MG5_aMC (LO, NI<br>Sherpa                                                                                                                    |                                       | Ur                         | certainty (%)                                |                | ee     | μ        | μμ l               |                            | ee              | μμ           |                    |   |
| lead                              |                                         | Total unc.<br>Theoretical syst un                                                                                                            | ic. ]                                 |                            |                                              | Statistical    |        | 1.0      | 0                  | .7                         | 0.6             | 7.7          | 5.9                |   |
| )p                                | 15                                      | Statistical unc.                                                                                                                             | -                                     |                            |                                              | JES, JER       |        | 2.7      | 3                  | .0                         | 2.9             | 6.9          | 5.4                |   |
|                                   | =                                       |                                                                                                                                              |                                       | • b tagging/mistagging 3.0 |                                              |                |        |          | 2                  | .9                         | 2.9             | 5.4          | 6.0                |   |
|                                   | 10                                      | >= 2 k                                                                                                                                       | p-iet 🗄                               |                            | Unclustered energy of $p_{\rm T}^{\rm miss}$ |                |        | 2.8      | 2                  | .8                         | 2.8             | 3.5          | 3.7                |   |
|                                   |                                         |                                                                                                                                              |                                       |                            | Backg                                        | round estimati | 2.2    | 2        | .0                 | 2.1                        | 2.3             | 2.4          |                    |   |
|                                   | 5                                       |                                                                                                                                              |                                       | Pileup reweighting         |                                              |                |        | 1        | .7                 | 1.9                        | 2.9             | 2.1          |                    |   |
|                                   | Ę                                       |                                                                                                                                              | Electron selection                    |                            |                                              |                | 4.6    |          | _                  | 1.5                        | 4.3             | —            |                    |   |
|                                   |                                         | <del></del>                                                                                                                                  | · · · · · · · · · · · · · · · · · · · | Luminosity                 |                                              |                |        | 1.6      | 1                  | .6                         | 1.6             | 1.6          | 1.6                |   |
|                                   |                                         | TIR IIIIII                                                                                                                                   | Muon selection                        |                            |                                              |                | 0      | .6       | 0.4                |                            | 1.0             |              |                    |   |
|                                   |                                         |                                                                                                                                              |                                       |                            | Pileup jet identification                    |                |        | 0.3      | 0                  | .3                         | 0.3             | 0.6          | 0.7                |   |
|                                   | 1.5                                     | ···                                                                                                                                          | ······                                |                            | L1 prefiring                                 |                |        |          | 3 0.2              |                            | 0.2             | 0.3          | 0.2                |   |
| ed.                               | 17///////////////////////////////////// |                                                                                                                                              |                                       | Model dependency           |                                              |                | y      | 0.3      | 0                  | .2                         | 0.2             | 0.3          | 0.2                |   |
|                                   |                                         |                                                                                                                                              |                                       |                            | $\mu_R$ and $\mu_F$ scales                   |                |        | 2.6      | 2                  | .9                         | 2.1             | 2.5          | 2.3                |   |
|                                   | 1.5E                                    | · · · · · · · · · · · · · ·                                                                                                                  | ·····                                 |                            |                                              | PDF            |        | 0.4      | 0                  | 0.3                        | 0.3             | 0.3          | 0.3                | 3 |
|                                   | 1                                       |                                                                                                                                              |                                       | $\alpha_{s}$               |                                              |                |        | 0.3 0.2  |                    |                            | 0.2 0.1         |              | 0.1                |   |
|                                   | 0.5                                     |                                                                                                                                              |                                       |                            |                                              |                |        |          |                    |                            |                 |              |                    |   |
|                                   | 40 60 80                                | 100 120                                                                                                                                      | 140 160 180 20                        | 0                          |                                              |                |        |          |                    |                            |                 |              |                    |   |
|                                   |                                         |                                                                                                                                              | p <sub>T</sub> leading b jet [GeV]    | •                          |                                              |                |        |          |                    |                            |                 |              |                    |   |
|                                   |                                         | Channel Measured                                                                                                                             |                                       |                            |                                              | MG5_aMC        | MG     | MG5_aMC  |                    | MG5_aMC                    |                 | 5_амс        | SHERPA             |   |
|                                   |                                         |                                                                                                                                              |                                       |                            |                                              | LO             | l      | LO       | NLO                |                            | NLO             |              |                    |   |
|                                   |                                         |                                                                                                                                              |                                       |                            |                                              | NNPDF 3.0      | NNF    | PDF 3.1  | NNPDF 3.0 NNPD     |                            | PDF 3.1         |              |                    |   |
|                                   |                                         |                                                                                                                                              |                                       |                            |                                              |                | (      | CP5      | CUI                | CUETP8M1 C                 |                 | CP5          |                    |   |
|                                   | $Z + \ge 1 b$ jet                       | ee                                                                                                                                           | $6.45 \pm 0.06 \pm$                   | = 0.49 =                   | ± 0.17                                       | 6.25           | 6      | .33      | 7.86               | $5 \pm 0.52$               | 7.05            | $5 \pm 0.48$ | 8.05               |   |
|                                   |                                         | $\begin{array}{ccc} \mu\mu & 6.55 \pm 0.05 \pm \\ \ell\ell & 6.52 \pm 0.04 \pm \\ \text{b jets} & \text{ee} & 0.66 \pm 0.05 \pm \end{array}$ |                                       | $\pm 0.39 \pm 0.19$        |                                              | 6.26           |        | 6.34 7.8 |                    | $5 \pm 0.51$               | 7.02            | $2 \pm 0.47$ | 7.98               |   |
|                                   | -                                       |                                                                                                                                              |                                       | = 0.40 =                   | $\pm 0.14$ 6.25                              |                | 6      | .34      | $7.86 \pm 0.51$    |                            | 7.03            | $3 \pm 0.47$ | 8.02               |   |
|                                   | $Z + \ge 2 b$ jets                      |                                                                                                                                              |                                       | = 0.07 =                   | ± 0.02                                       | 0.62 0.        |        | 0.72     | 0.89               | $0\pm0.08$                 | $0.77 \pm 0.07$ |              | 0.84               |   |
|                                   |                                         | μμ                                                                                                                                           | $0.65 \pm 0.04 \pm$                   | = 0.06 =                   | $\pm 0.02$ 0.64                              |                | C      | 0.71     | 0.91               | $\pm 0.09$                 | $0.77 \pm 0.77$ | $1 \pm 0.07$ | 0.84               |   |
| $\ell\ell$ 0.65 ± 0.03 ± 0.07 ± 0 |                                         |                                                                                                                                              |                                       |                            | $\pm 0.02$                                   | 0.63           | 0.63 0 |          | 71 $0.90 \pm 0.09$ |                            | 0.77            | $1 \pm 0.07$ | 0.84               |   |

27

ll

4.6

5.8 5.8

3.6

2.4

2.4 1.4

1.6

0.7

0.7

0.3

0.2

2.5

0.3

0.1