

Status of VBS measurements at the LHC

Shu Li

Tsung-Dao Lee Institute, Shanghai Jiao Tong Univ.

On behalf of ATLAS+CMS collaborations

Shanghai Jiao Tong University

SM measurements in a nutshell

Measurements of Multi-Boson Production processes: At the moment including diboson/triboson/ *VBS*/VBF/... (Vγ/Vγγ/VVγ but not γγ/γγγ)

VBS, being the rare processes in SM at LHC, desire a good discrimination against enormous backgrounds.

Vector Boson Scattering topology in a nutshell

Vector Boson Scattering (VBS) is a key process to probe the mechanism of electroweak symmetry breaking.

The $m_h = 125$ GeV Higgs will unitarize VV \rightarrow VV scattering provided it has SM hVV couplings. This can be carefully examined by either

- Precise measurements of the hVV couplings at the light Higgs resonance
- Measurement of VV \rightarrow VV differential cross sections at high p_T and invariant mass

VBS signature in short

- Typical VBS topology
 - tagging jets:
 - transverse momenta: pT(j1), pT(j2)
 - invariant mass: M(jj)
 - rapidity difference: ΔY(jj)
 - central jet veto
 - centrality: $\max\left(\left|\frac{y_i 0.5(y(j_1) + y(j_2))}{y(j_1) y(j_2)}\right|\right)$
 - p_T balance: $\frac{\sum_i \vec{p_{T_i}}}{\sum_i |\vec{p_{T_i}}|}$
 - All hard process decay products and jets

An example event display of VBS signatures

- A clean signature of VBS likesign WW pair production w/ forward-backward jets and central like-sign leptons
- Observed by CMS (2017) and ATLAS (2018) at >5 σ significance

Experimental challenges per final states

	channel	final state	comment *
Obs	served! VBF W	ℓv jj	statistics is not a problem, good modelling of W+jets needed
Obs	served! VBF Z	ℓℓ jj	statistics is not a problem, good modelling of Z+jets needed
Ob	<mark>served!</mark> VBS W [±] W [±]	ℓ±vℓ'±v jj	"golden channel": very good EW/QCD ratio, mainly experimental (charge misID) background, good statistics
	VBS W±W∓	ł±vł'∓v jj	hard to investigate due to dileptonic ttbar background, Higgs group does also use this final state
Ob	served! VBS WZ	ℓℓℓ'v jj	similar cross section as ssWW, but larger QCD background, fair reconstructibility of fs
Ob	<mark>served!</mark> VBS Wγ/Zγ	ℓvγ jj / ℓℓγ jj	photon brings higher stat. (and different experimental systematics), lacks sensitivity to BSM in Higgs sector
	VBS WV	ℓvjj jj	large backgrounds (W+jets, ttbar), but promising boosted regime when looking for NP effects
	VBS ZV	ℓℓjj jj	large backgrounds (Z+jets, ttbar), but promising boosted regime when looking for NP effects, no neutrinos in final state
0	VBS ZZ	ℓ ℓℓ'ℓ'jj	very clean channel, very good reconstructibility of final state and low background contamination, but small cross-section
0	VBS ZZ	ℓℓvv jj	challenging to measure invisible Z decay, combination with leptonic decay might help to suppress dileptonic ttbar background

https://indico.desy.de/event/7512/contributions/82684/attachments/55321/67389/aQGCWS.pdf

P. Anger

Summary of VBS Observations at LHC

Today's MAIN COURSE...

	W⁺W⁺jj	WZjj	ZZjj	Wγjj	Ζγϳϳ	γγ → WW
CMS 13TeV	5.5σ	6.8σ	4.0σ	5.3σ	9 .4 <i>σ</i>	х
ATLAS 13TeV	6 .5 <i>σ</i>	5.3σ	5.5σ	х	10σ	8.4 σ

- Quite a large topic with many different channels
- Fruitful accomplishments at LHC on VBS observations
- Will go through the complete list of these channels with a bit more details on more recent observations.

Former Highlights: observation of same-sign WW VBS processes at CMS/ATLAS

 1^{st} evidence (>3 σ) by ATLAS (2014) 1^{st} observation (>5 σ) by CMS in 2017 (published in 2018) followed by ATLAS observation (published in 2019)

http://atlas.cern/updates/physics-briefing/weak-lightsabers

Former Highlights: 1st observation of WZ VBS processes by ATLAS at LHC

1st observation (>5σ) by ATLAS in ICHEP2018 highlight (published in 2019) followed by CMS observation (published in 2020)

http://atlas.cern/updates/physics-briefing/weak-lightsabers

Former Highlights: 1st observation of ZZ VBS process at LHC

arXiv:2106.11082 Submitted to PRD

1st observation of EWK Z(II)yjj process w/ CMS full Run2

- The significance calculated w/ simul. fit in the signal region with 2D m_{jj}-Δη_{jj} binning and the control region with 1D m_{jj} binning in 4 categories for μ/e and barrel/endcap photon
- Obs. (Exp.) significance: 9.4 σ (8.5 σ).

arXiv:2106.11082 Submitted to PRD

Differentially measured EWK Z(II)yjj process w/ CMS full Run2

ATLAS-CONF-2021-38

NEW: Observation of $Z\gamma$ VBS process in ee/ $\mu\mu$ at ATLAS

ATLAS-CONF-2021-38

Overview of the measured fiducial phasespace of Zy VBS

		ts / bin	$\begin{array}{c c} 800 \\ \hline \\ \hline \\ 700 \\ \hline \\ \hline \\ \hline \\ \hline \\ 700 \\ \hline \\$
Lepton	$p_{\rm T}^{\ell} > 20, 30 (\text{leading}) \text{ GeV}, \ \eta_{\ell} < 2.47$	Even	600 SR 500 SR 900 V 900 V 900 V 900 V 900 V 900
	$N_\ell \ge 2$		400 Total unc.
Photon	$E_{\rm T}^{\gamma} > 25 {\rm GeV}, \ \eta_{\gamma} < 2.37$		
	$E_{\mathrm{T}}^{cone20} < 0.07 E_{\mathrm{T}}^{\gamma}$		100
	$\Delta R(\ell,\gamma) > 0.4$	/ Pred.	
Jet	$p_{\rm T}^{jet} > 50 {\rm GeV}, \ y_{jet} < 4.4$	Data	
	$ \Delta y > 1.0$		m _{ji} [GeV]
	$m_{ii} > 150 \text{GeV}$		
	remove jets if $\Delta R(\gamma, j) < 0.4$ or if $\Delta R(\ell, j) < 0.3$	٥	_{FEW} (obs.) =
Event	$m_{\ell\ell} > 40 \text{ GeV}$	4	1.49 ± 0.40 (stat.) ± 0.42 (syst.) fb
<u>Smart FSR re</u>	ejection cut $m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$	O	σ _{FW} (exp.) =
	$\zeta(\ell\ell\gamma) < 0.4$	4	1.73 ± 0.01 (stat.) ± 0.15
	$N_{jets}^{gap} = 0$	(PDF)+0.23-0.22 (scale) fb

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.	Total
$\Delta\sigma_{EW}/\sigma_{EW}~[\%]$	± 9	± 1	± 1	± 5	$^{+6}_{-5}$	$^{+5}_{-4}$	± 13

ATLAS-CONF-2021-004

NEW: 1st Observation of $Z\gamma$ VBS process in neutrino channels at ATLAS

Obs.(Exp.) Significance: $5.2\sigma(5.1\sigma)$

arXiv:2109.00925 [submitted to EPJC]

- Similar signatures used to provide strong constraints for.
- invisible Higgs decay in VBF model with additional photon (0.37 (0.34+0.15-0.10) at 95% CL)
- VBF Higgs to dark photons: H→γγd(0.018 (0.017+0.007 -0.005) at 95% CL)

Phys. Lett. B 811 (2020) 135988

1st observation of EWK Wyjj process by CMS

CMS

- First observation of the VBS Wy production with leptonic final states
- Signal events are extracted from 2D m_{ii} - m_{ly} distribution •
 - Simultaneous fit in the CR and SR

Obs. (Exp.) significance: 5.3σ (4.8 σ) 1st observation at LHC by combining CMS 13TeV+8TeV

> $\sigma_{EW}^{theory} = 17.0 \pm 4.1 \, \text{fb}$ σ^{theory}_{EW+QCD} $= 89.7 \pm 13.9 \, \text{fb}$ $\sigma_{EW} = 20.4 \pm 4.5 \, \text{fb}$ $\sigma_{EW+QCD} = 108 \pm 16 \, \text{fb}$

<u>CMS-PAS-SMP-20-013</u>

Dive into complex final states: semi-leptonic VBS channels

1st Observation of photon scattering into W boson pairs at ATLAS

- Photon-induced W[±]W[∓] via trilinear and quartic gauge-boson self-interactions
- probe the gauge structure of the electroweak
- γγ→W[±]W[∓] unique property among VBS-like diboson processes
 - NO diagrams NOT involving gauge-boson self-interactions are present at Born level

Phys. Lett. B 816 (2021) 136190

- Evidence for $yy \rightarrow W^{\pm}W^{\mp}$ production from Run-1: ATLAS, 3.0 σ , CMS, 3.4 σ
- w/ full Run2, ATLAS now obtain the first observation at LHC
- Signal process of p p(γγ) → p (*)W+W- p (*) with three contribution categories: final-state proton either stays intact or fragments after emitting a photon, i.e. elastic, single-dissociated and double-dissociated WW production

1st Observation of photon scattering into W boson pairs at ATLAS Phys. Lett. B 816 (2021) 136190

- Signal characteristics:
 - Charged leptonic decays of the W, no additional charged-particle activity.
 - $W^+W^- \rightarrow e^{\pm} \nu \mu^{\mp}$ to further enhance purity.
- Obs. (Exp.) signif. = 8.4 (6.7) σ
- Measured fiducial x-sec: 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb
- Predicted fiducial x-sec: 3.5 ± 1.0 fb
 - w/MG5_aMC@NLO+Pythia8 using the appropriate elastic or inelastic MMHT2015qed PDF • sets. Extra survival factor introduced (for re-scattering effects, helicity structure of the hard scatterings...)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Aug 2020	CMS ATLAS	Channel	Limits	[/dt	Vs
f_{ro}/Λ^4	, H-4 ,	www	[-1.2e+00, 1.2e+00]	35.9 fb	13 TeV
1,0		27	-7 4e-01 6 9e-011	19.7 fb ⁻¹	13 TeV
		Ζγ	-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV
		Wy	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
		Wγ	[-6.0e-01, 6.0e-01]	35.9 fb	13 TeV
		ss WW	[-4.2e+00, 4.6e+00]	19.4 fb	8 TeV
	凸	SS WW	-2.00-01, 5.10-01	137 fb ⁻¹	13 TeV
	F	77	[-2 4e-01, 2 2e-01]	137 fb ⁻¹	13 TeV
		WV ZV	-1.2e-01, 1.1e-01	35.9 fb ⁻¹	13 TeV
f_{Λ^4}		WWW	[-3.3e+00, 3.3e+00]	35.9 fb	13 TeV
T,1 //		Zγ	[-4.4e+00, 4.4e+00]	19.7 fb	8 TeV
		EY.	[-1.2e+00, 1.1e+00]	35.9 fb	13 TeV
		Wy	-3.70+00, 4.00+00]	19.7 fb	8 lev
		CC W/W	-2.1e+00.24e+001	35.9 ID 10.4 fb ⁻¹	8 TeV
	H	ss WW	-1.2e-01, 1.5e-011	137 fb ⁻¹	13 TeV
	Ĥ	WZ	[-3.7e-01, 4.1e-01]	137 fb ⁻¹	13 TeV
	н	ZZ	[-3.1e-01, 3.1e-01]	137 fb ⁻¹	13 TeV
	H	WV ZV	[-1.2e-01, 1.3e-01]	35.9 fb	13 TeV
f_{T_2}/Λ^4		WWW Z	-2.70+00, 2.60+00	35.9 fb	13 Iev
1,2		77	-2.00+00 1.00+00	19.7 ID 25.0 fb ⁻¹	12 ToV
		Wy	-1.1e+01, 1.2e+01	19.7 fb ⁻¹	8 TeV
		WY	-1.0e+00, 1.2e+00	35.9 fb ⁻¹	13 TeV
		ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	H,	ss WW	[-3.8e-01, 5.0e-01]	137 fb	13 TeV
		WZ	[-1.0e+00, 1.3e+00]	137 fb	13 TeV
		XXX TV	-2.80-01 2.80-01	13/ ID 25 0 fb ⁻¹	13 TeV
1.4		Zvv	-9.3e+00. 9.1e+001	20.3 fb ⁻¹	8 TeV
$I_{T,5} / \Lambda$	· H ·	ZY	-7.0e-01, 7.4e-011	35.9 fb ⁻¹	13 TeV
		Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
	H	Wγ	[-5.0e-01, 5.0e-01]	35.9 fb	13 TeV
f_{Te} / Λ^4		ζγ.	[-1.6e+00, 1.7e+00]	35.9 fb	13 TeV
1,0		WY	-4.00-01 4.00-011	19.7 fb	12 ToV
£ 1.4		77	[-2.6e+00_2.8e+00]	35.9 fb ⁻¹	13 TeV
I _{T,7} /Λ		Wy	-7.3e+00, 7.7e+00	19.7 fb ⁻¹	8 TeV
1120		WY	[-9.0e-01, 9.0e-01]	35.9 fb ⁻¹	13 TeV
f_{ra}/Λ^4		Zγ	[-1.8e+00, 1.8e+00]	19.7 fb	8 TeV
1,8	H I	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> γ <u></u> <u></u>	[-4.7e-01, 4.7e-01]	35.9 fb	13 TeV
		77	-1.00+00, 1.00+00]	20.2 fb	13 ToV
£ 1.4		Zw	-7.4e+00, 7.4e+001	20.3 fb ⁻¹	8 TeV
I _{T,9} /A		ZY	-4.0e+00, 4.0e+00	19.7 fb ⁻¹	8 TeV
		Zγ	[-1.3e+00, 1.3e+00]	35.9 fb ⁻¹	13 TeV
		Zγ	[-3.9e+00, 3.9e+00]	20.2 fb	8 TeV
L		ZZ	[-9.2e-01, 9.2e-0]]	137 fb	13 TeV
20	0	20		40	
aC summarv	plots at: http://cern.ch/go/8ghC	2	OGC Limite	05% CI	[To\/-4
, , , , , , , , , , , , , , , , , , , ,		a		33 /0 U.L	. LIEV

Summary and prospects

- LHC Run2 provides large amount of pp collision data at a higher center-of-mass energy, giving rise to VBS observation sensitivity
 - **Observed** VBS-VV channels: like-sign WW, WZ, ZZ, W/Z+ γ (NEW!), Exclusive $\gamma\gamma \rightarrow$ WW (NEW!)
 - More adventurous channels to explore at LHC: semileptonic WV(jj)/ZV(jj), Oppo-sign WW, ...
 - Important test of EWSB and higgs mechanism in the unitarization of VV→VV scattering
 - First differential measurements and polarization extraction attempts are being tried out
 - Next steps: more differential measurements, 1st extraction of V_LV_L polarization components, BSM constraints
- Potential showstoppers and improvements
 - Quark/Gluon induced jet separation using jet substructure technique to distinguish "color-charge" (tracking info, multiplicities, track jet width, calo topo cluster width, etc.)
 - Forward tracking improvement in future LHC upgrade
 - Pileup jet suppression in forward region
 - Theoretical uncertainties: improvement of high order precision in QCD irreducible background modelings, high order EWK effect predictions, interference modeling
 - Experimental challenges: Charge flips, soft-leptons
 - New physics probing: (doubly-)charged higgs, other heavy resonances, MSSM, aQGCs

Backup

VV scattering topology SM review

SM particles have just the right couplings so amplitudes don't grow with energy

VBS measurement sensitivity prospect at 8TeV vs 13TeV

[CERN-THESIS-2014-105] (P. Anger)

How much the jump in energy buy us

- Measurements mostly stat. limited
- Signals mostly qq initiated→no huge jumps in inclusive x-sec
- Still EWK production tends to raise slightly faster than QCD at high m(jj), being the most interesting part sensitive to high Vs of the bosons scattering

ZZ VBS analysis strategy overview

- VBS in a further extrapolated phasespace after inclusive ZZ selection plus VBS-enriched dijet cut
- MVA (BDTG)-based analysis is used then to extract the EW VBS ZZ signal from background
- Interference between EW and QCD as systematic on the EW VBS ZZ production measurement
- Combining $ZZ \rightarrow 4I$ and $ZZ \rightarrow 2I2v$ final states to gain enough sensitivity:
 - $ZZ \rightarrow 4l$ channel:
 - Clean experimental signature except QCD induced ZZjj, small "other" background contribution (~3%): fake leptons from Z+jets, ttbar, WZ; irreducible backgrounds from other rare processes such as ttV and VVV.
 - The QCD 4l+jj being the major background. EW/QCD is around 20% level overall, MVA discriminant is adopted.
 - ZZ→2l2v channel:
 - Much larger backgrounds: WZ, WW + ttbar, +irreducible QCD ZZjj (when looking for EW)
 - Z+jets w/ fake MET largely suppressed while tightening MET-significance cut
 - EW/background ~15%, MVA becomes essential but more complicated than 4l channel

BDT MVA analysis in ZZ VBS

Gradient BDT in both channels:

- 4I: EW vs QCD
- 2l2v: EW vs All except Z+j (b/c of large negative weights)
- All likely discriminating variables taken into account, except those badly modeled (e.g. Centrality) and lowest ranked ones

<i>llvv</i> variables	<i>llll</i> variables
$\Delta\eta(ll)$	m_{jj}
m_{ll}	leading p_T^j
$\Delta \phi(ll)$	subleading p_T^j
m_{jj}	$p_T(ZZjj)/H_T(ZZjj)$
$E_{\rm T}^{\rm miss} significance$	$Y(j1) \times Y(j2)$
$\Delta Y(jj)$	$ \Delta Y(jj) $
$Y(j1) \times Y(j2)$	Y_{Z2}^*
HT	Y_{Z1}^*
$\Delta R(ll)$	p_T^{ZZ}
subleading p_T^j	m _{ZZ}
$E_{\mathrm{T}}^{\mathrm{miss}}$	p_T^{Z1}
subleading p_T^l	$p_T^{\ell 3}$
leading p_T^l	-

arXiv:2004.10612 (submitted to Nature Physics)

Summary of ZZ VBS measurements

	Process	$\ell\ell\ell\ell jj$	$\ell\ell u u j j$
	${ m EW}~ZZjj$	20.6 ± 2.5	12.3 ± 0.7
Signal/Bgd	$\operatorname{QCD} ZZjj$	77.4 ± 25.0	17.2 ± 3.5
yield	$\operatorname{QCD}ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
estimations:	Non-resonant- $\ell\ell$	-	21.4 ± 4.8
	WZ	-	22.8 ± 1.1
	Others	3.2 ± 2.1	1.2 ± 0.9
	Total	114.3 ± 25.6	78.4 ± 6.2
	Data	127	82

Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\frac{1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.00(\text{bkg}) \pm 0.00(b$	± 0.03 (lumi) 1.14 ± 0.04 (stat) ± 0.20 (theo)
$\ell\ell\nu\nu jj \mid 1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.16(\text{bkg})$	± 0.03 (lumi) 1.07 ± 0.01 (stat) ± 0.12 (theo)

		$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
Observation:	$\ell\ell\ell\ell jj$	1.54 ± 0.42	0.95 ± 0.22	5.48 (3.90) σ
	$\ell\ell u u j j$	0.73 ± 0.65	-	$1.15~(1.80)~\sigma$
	Combined	1.35 ± 0.34	0.96 ± 0.22	5.52 (4.30) σ

Event display of the ZZ VBS process

Page. 29

ZZ VBS object and event selections overview

	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
Electrons	$p_{ m T} > 7~{ m GeV}, \eta < d_0/\sigma_{d_0} < 5~{ m and}~ z_0 imes \sin heta$	2.47 $ < 0.5 mm$
Muons	$p_{ m T} > 7~{ m GeV}, \eta < 2.7 \ d_0/\sigma_{d_0} < 3~{ m and}~ z_0 imes \sin heta$	$p_{\rm T} > 7 ~{\rm GeV}, \eta < 2.5 \label{eq:pt}$ $ < 0.5 ~{\rm mm}$
Jets	$p_{\rm T} > 30 \ (40) \ {\rm GeV} \ {\rm for} \ \eta < 2.4 \ (2.4 < \eta < 4.5)$	$p_{\rm T} > 60 (40)$ GeV for the leading (sub-leading) jet
	$p_{\rm T} > 20, 20, 10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\epsilon'+\epsilon'^-} - m_Z $	$p_{\rm T}>30~(20)~{\rm GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons
ZZ selection	$m_{\rho^+\rho^-} > 10 \text{ GeV}$ for lepton pairs	$80 < m_{\ell^+ \ell^-} < 100 { m ~GeV}$
	$\Delta R(\ell,\ell')>0.2$	No b-tagged jets
	$66 < m_{\ell^+ \ell^-} < 116~{\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance > 12
Dijot colection	Two most energetic jets with	$y_{j_1} \times y_{j_2} < 0$
Dijet selection	$m_{jj} > 300 \text{ GeV} \text{ and } \Delta y(jj) > 2$	$m_{jj} > 400 \text{ GeV} \text{ and } \Delta y(jj) > 2$

Generally tighter selections in llvv channel due to more backgrounds Going into VBS-rich region after dijet selection

Eur. Phys. J. C 81 (2021) 163

Differential measurements of VBF Zjj process

- $2 \rightarrow 1$ fusion process of Zjj 1st observed by ATLAS in Run1
- Challenging bgd separation between strong and EWK Zjj
- CR for strong Zjj constraint and Likelihood fit to measure EWK Zjj binby-bin
- differential XS are measured: m_{jj} , $\Delta y j j$, $\Delta \varphi_{jj}$, $p_{T,\ell\ell}$
 - signed azimuthal angle between the two jets found sensitive to the interference between SM and dim6 scattering amplitudes, providing direct test of charge-conjugation and parity invariance in boson self-interactions.

Photon scattering into W boson pairs at HL-LHC

- **1.** HL-LHC baseline, track- $|\eta| < 2.5$ nominal analysis
- **2.** HL-LHC baseline, track- $|\eta| < 4.0$ forward tracking with the ITk
- **3.** Track-pT > 500 MeV, track- $|\eta|$ < 2.5 dedicated low-pT reconstruction
- Require dilepton vertex plus zero additional tracks within a window of size ⊿z around that vertex
 - rejects events with underlying event activity (backgrounds)
- Signal and background efficiency is impacted by pile-up
 - depends on μ and Δz

We want this efficiency to be as low as possible

- ATLAS HI-I HC baseline track-Inl < 2.5 Simulation Preliminary HL-LHC baseline, track-Inl < 4.0 Track- $p_T > 500$ MeV. track-lnl < 2.5Run 2 We want this efficiency to be 0.4 as high as possible 0.3 0.2 0.1 0.2 0.4 0.6 0.8 1.0 Window size [mm]
- Smaller window size reduces chance of pileup track falling in window \Rightarrow higher efficiency
- Lower reconstructed track-pT means more pileup tracks ⇒ lower efficiency
- Extended η range means more pileup tracks (and with worse resolution) \Rightarrow lower efficiency •
- Smaller window size loses UE tracks due to finite resolution ⇒ higher efficiency
- Extended η range means higher tracking acceptance \Rightarrow lower efficiency
- Lower reconstructed track-pT means more UE tracks reconstructed ⇒ lower efficiency

VBS/VBF signature for New Physics Searches: Doubly charged Higgs

- Expected and observed 95% CL upper limits on the x-sec times BR, σ_{VBF}(H^{±±}) (H^{±±}→W[±]W[±]) (left) and on s_H in the Georgi-Machacek model (right) as a function of doubly charged Higgs boson mass.
- The blue area in the upper-right corner covers the region where GM model is not applicable

VBS/VBF signature for New Physics Searches: Charged Higgs

Future of VBS diboson physics: polarized VBS attempt

BDT and DNN can help improve the sensitivity. Although it still needs 3000/fb to reach 4-5 standard deviations.

Observed (expected) significance for LL and LT+LL: **0.88 (1.17)σ**; **2.3 (3.1)σ**

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21