

Overall length : 28.7 Magnetic field : 3.8 STEEL RETURN YOK 12,500 tonnes

SILICON TRACKERS Pixel (100x150 μm) ~16m⁴ ~66M channels Microstrips (80x180 μm) ~200m³ ~9.6M channels

Overview of precision measurements (angular coefficients, charge asymmetry, $sin2\Theta, m_W$, etc)

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO4 crystals <u>Vladislav Shalaev,</u> Sergei Shmatov for the CMS and ATLAS Collaborations

HADRON CALORIMETER (122) Brass + Plastic scintillator ~7,000 channels

22nd Particles and Nuclei International Conference 2021 8 September, Lisbon

Outline

Events/GeV

- □ Z/W production, Drell-Yan
 - ✓ total cross sections
 - differential cross sections
 - Branching
 - \checkmark m_W measurements
- □ Asymmetries
 - charged asymmetry in W production
 - forward-backward asymmetry and angular coefficients for Drell-Yan
 - weak mixing angle
- \Box V_{tb} measurements
- □ Rare decays

CMS Standard Models Physics Results https://cms-results.web.cern.ch/cms-results/publicresults/publications/SMP/index.html CMS B Physics and Quarkonia Physics Results https://cms-results.web.cern.ch/cms-results/publicresults/publications/BPH/index.html ATLAS Standard Models Physics Results https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardMo delPublicResults

CMS Integrated Luminosity Delivered, pp

EWK Gauge Bosons: Z and W production

High rate at the LHC

- Provides statistic to study inclusive and differential distributions
- Good understanding of the detectors allow for precision measurements
- Test p-QCD and PDF in different regimes
- Developments and testing of new MC generators and techniques

CMS-PAS-SMP-15-004

EWK Gauge Bosons: Z and W production. Branching.

 $\sigma_{W^+}^{\text{tot}}$

 $\sigma_{W^{-}}^{\text{tot}}$

- ✓ Measured leptonic decay branching fractions of W and Z boson
- Precision is better than for the \checkmark LEP results
- Results support the hypothesis of lepton universality for the weak interaction

$$\sqrt{s} = 2.76 \text{ TeV} (\text{ATLAS})$$

10 10.2 10.4 10.6 10.8

LEP

 0.993 ± 0.019

 1.063 ± 0.027

 1.070 ± 0.026

 1.066 ± 0.025

Data ± stat. uncertainty

MMHT14nnlo68C ATLAS-epWZ12nnlo

HERAPDF2.0nnlo (NNLO QCD, inner uncert.: PDF only)

ABMP16 CT14nnlo NNPDF3.1

9.6 9.8

CMS

 1.009 ± 0.009

(1, 07 (--+) + 70 (1--+) + 20 (--++) + 1

11 11.2 11.4

ATLAS

 0.992 ± 0.013

 $\sigma_{W^{\pm}}^{fid} / \sigma_{Z}^{fid}$

$$R_W = \frac{\sigma_{W \to e\nu}^{\text{fid}}}{\sigma_{W \to \mu\nu}^{\text{fid}}} = 0.986 \pm 0.018 \text{ (stat.)} \pm 0.028 \text{ (syst.)}$$
$$R_Z = \frac{\sigma_{Z \to e^+e^-}^{\text{fid}}}{\sigma_{Z \to \mu^+\mu^-}^{\text{fid}}} = 0.96 \pm 0.06 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$$

 $R_{\mu/e} = \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) / \mathcal{B}(W \to e \overline{\nu}_{e})$

EPJ C 79 (2019) 901

W Charge Asymmetry

 Gives important constraints on the ratio of u and d quark distributions in the proton

Phys. Rev. D 102 (2020) 092012

EPJ C 79 (2019) 760

2

h"

Done by ATLAS (8 TeV) and CMS (13 TeV, 2016). Good agreement between each other and MC predictions!

Z (Differential) Cross Section (I)

- Important information about BSM physics background
- W boson mass measurements relies on p_T^{ll} spectrum
- Different approaches to describe p_T^{ll} spectrum in different p_T^{ll} ranges

it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties

Channel	Measured cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell\ell)$	Predicted cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell\ell)$
	(value \pm stat. \pm syst. \pm lumi.)	(value \pm PDF $\pm \alpha_{S} \pm$ scale \pm intrinsic)
$Z/\gamma^* \to ee$	$738.3 \pm 0.2 \pm 7.7 \pm 15.5 \text{ pb}$	
$Z/\gamma^* \to \mu\mu$	$731.7 \pm 0.2 \pm 11.3 \pm 15.3 \mathrm{pb}$	
$Z/\gamma^* \to \ell\ell$	$736.2 \pm 0.2 \pm 6.4 \pm 15.5 \text{ pb}$	$703^{+19}_{-24} \stackrel{+6}{_{-8}} \stackrel{+4}{_{-6}} \stackrel{+5}{_{-5}} \text{pb} [72]$

 $\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \times \sin(\theta_{\eta}^*)$

 $\cos(\theta_{\eta}^*) = \tanh[(\eta^- - \eta^+)/2]$

EPJ C 80 (2020) 616

	•			
Channel	Measured cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell\ell)$	Predicted cross-section $\times \mathcal{B}(Z/\gamma^* \to \ell \ell)$		
	(value \pm stat. \pm syst. \pm lumi.)	(value \pm PDF $\pm \alpha_{s} \pm$ scale \pm intrinsic)		
$Z/\gamma^* \rightarrow ee$	$738.3 \pm 0.2 \pm 7.7 \pm 15.5 \text{ pb}$			
$Z/\gamma^* \to \mu\mu$	$731.7 \pm 0.2 \pm 11.3 \pm 15.3 \text{ pb}$			
$Z/\gamma^* \to \ell \ell$	$736.2 \pm 0.2 \pm 6.4 \pm 15.5 \text{ pb}$	$703^{+19}_{-24} \stackrel{+6}{_{-8}} \stackrel{+4}{_{-6}} \stackrel{+5}{_{-5}} \text{ pb} [72]$		
describe the four the four the four the four terms of the second	$\begin{array}{c c} \pm 11.3 \pm 15.3 \text{ pb} \\ \pm 6.4 \pm 15.5 \text{ pb} \end{array} 703^{+19}_{-24} \stackrel{+6}{_{-8}} \stackrel{+4}{_{-6}} \stackrel{+5}{_{-5}} \text{ pb} [72] \\ \hline \textbf{JHEP 12 (2019) 061} \end{array}$			
\sim 0.08 0.07 \sim 0.07 \sim 0.06 \sim Cr	oss section σ	${\cal B} \ [{ m pb}]$		

ss Section (II)

Z Diffe

Z Differential Cross Section (II)

Differential cross sections of the transverse momentum p_T , the optimized angular variable ϕ^* , η , and the rapidity of lepton pairs are measured by ATLAS and CMS at 13 TeV (2016)

Drell-Yan Differential Cross Section

JHEP 12 (2019) 059

✓ The total cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV

 ✓ The measured differential cross sections are in good agreement with the theoretical calculations (NNLO QCD + NLO EWK)

EPJ C 75 (2015) 147, arXiv:1412.1115

 $3 \times 10^{-4} < x < 1.0$ and $6 \times 10^2 < Q^2 < 3 \times 10^6 \text{ GeV}^2$

✓ The shape of the distribution is defined entirely by the √s and the Bjorken x dependencies of the PDFs, since the dependence on the hard scattering cross section is canceled out. In the Z peak region, the expected double ratio is close to 1 by definition.

We observe agreement of the cross section(s) and double ratio measurement with the theoretical prediction within uncertainties

Drell-Yan Angular Coefficients (I)

2000 - 133 < M(μμ) < 150 GeV, ∣y

0.2

1000E

500

The lepton angular distribution in the Drell - Yan process in the γ^*/Z rest frame is expressed by both the CMS and ATLAS Collaborations (measured at 8 TeV) as:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\cos\theta^*\mathrm{d}\phi^*} \propto \left[(1+\cos^2\theta^*) + A_0 \frac{1}{2} (1-3\cos^2\theta^*) + A_1 \sin(2\theta^*) \cos\phi^* + A_2 \frac{1}{2}\sin^2\theta^* \cos(2\phi^*) + A_3 \sin\theta^* \cos\phi^* + A_4 \cos\theta^* + A_5 \sin^2\theta^* \sin(2\phi^*) + A_6 \sin(2\theta^*) \sin\phi^* + A_7 \sin\theta^* \sin\phi^* \right].$$

where θ and ϕ are the polar and azimuthal angles of l^- (e^- or μ^-) in the rest frame of γ^*/Z (Collins-Soper) and coefficients $A_0 - A_7$ are functions of p_T^Z , Y^Z , M^Z kinematic variables.

Vladislav Shalaev, Ilya Gorbunov; SMP-V

Drell-Yan Angular Coefficients (II)

Angular coefficients A_{0-7} (A_{0-4}) are obtained in bins of dilepton (dimuon) transverse momentum and rapidity 80 < $M_{\mu^+\mu^-}$ < 100 GeV by ATLAS (CMS) collaboration at 8 TeV

- Lam-Tung relation $A_0 = A_2$ (related with rotation invariance) violation was observed
- Non –zero coefficients A_{5-7} were measured by ATLAS collaboration
- Experimental data of CMS and ATLAS experiments are in agreement with each other and with SM NNLO predictions, but some deviations are exist at high p_T^Z A_{0-7} measurements at 13 TeV are in progress (CMS)

Weak Mixing Angle

 A_{FB}

CMS

0.0 < |y| < 0.4

← Data

Fit

19.6 fb⁻¹

EPJ C 78 (2018) 701

- $A_4\left(\frac{3}{8}A_{FB}\right)$ sensetive to V-A structure of the couplings in parity violation terms
- Only $A_4 \left(\frac{3}{8}A_{FB}\right)$ is non-zero at LO QCD at small p_T^Z
- A_{FB} was used to extracting $sin^2 \theta_{eff}^l$ value by CMS and ATLAS collaborations

Conclusions

- ✓ CMS and ATLAS show an excellent performance to detect different signals and produced many EWK measurements at 7, 8 and 13 TeV
- Precision measurements of inclusive W and Z and di-boson production cross section with large statistic
- Detailed studies of differential cross sections and many observables, like asymmetries and angular coefficients
- ✓ W and Z production associated to jets, including Z plus b-jets, studied W polarisation in W+jets
- All ATLAS and CMS measurements are so far in agreement with theoretical predictions from the Standard model and each other. No new physic is observed

Thanks for your attention:

September 2019

Summary

CMS Preliminary

t – physics. Vtb Measurements

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOPSummaryFigures#tt_cross_section

Rare decays: $B_S/B^0 \rightarrow \mu\mu$

 $\begin{array}{l} \underline{\text{SM predictions:}} \\ \text{Br}(\text{B}_{\text{S}} \rightarrow \mu \mu \text{): } (3.66 \pm 0.14) \times 10^{-9} \\ \text{Br}(\text{B}^{0} \rightarrow \mu \mu \text{): } (1.03 \pm 0.05) \times 10^{-10} \\ \tau_{\text{B}_{\text{S}}^{0}} = 1.509 \pm 0.004 \, \text{ps} \end{array}$

R < 0.052

 $\begin{array}{l} \underline{\text{Measurements:}} \\ \text{Br}(\text{B}_{\text{S}} \rightarrow \mu \mu \text{): } (2.69 \pm 0.36) \times 10^{-9} \\ \text{Br}(\text{B}^{0} \rightarrow \mu \mu \text{): } < 1.6 \times 10^{-10} \\ \tau_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}} = 1.91^{+0.37}_{-0.35} \text{ ps} \end{array}$

CMS-PAS-BPH-20-003 ; LHCb-CONF-2020-002 ; ATLAS-CONF-2020-049

No significant excess from SM predictions are observed!

Anomalous Triple Gouge Couplings

Standard model predictions: $c_{
m W} = c_{
m WWW} = c_{
m b} = 0$

Non-zero c-coefficients could indicate a new physics!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

e, μ

 ν_e, ν_μ

 W^{\pm}

 W^{\pm}

 Z^0, W^{\pm}

 Z^0 ,

AS NLO pQCD Stringent Tests: V + jets, VV+jets

MS

✓ The double differential cross sections of the Drell-Yan lepton pair production, as a function M_{ll} , p_T^{ll} , φ_η^* are measured up to M_{ll} = 1000 GeV

 ✓ Measurements are compared to state-of-theart predictions based on perturbative quantum chromodynamics including soft gluon resummation

PAS-SMP-20-003

✓ The DY double-differential cross sections and double ratio measurements presented here can be used to impose constraints on the quark and antiquark PDFs in a wide range of x

W Charge Asymmetry and Branching

interaction

$$\mathrm{ud}
ightarrow \mathrm{W^+} \ \mathrm{d}\overline{\mathrm{u}}
ightarrow \mathrm{W^-}$$

$$\mathcal{A}(\eta) = \frac{\sigma_{\eta}^{+} - \sigma_{\eta}^{-}}{\sigma_{\eta}^{+} + \sigma_{\eta}^{-}}$$

 ✓ Gives important constraints on the ratio of u and d quark distributions in the proton
 ✓ Also done by ATLAS at 8 TeV in muon channel (EPJ. C 79 (2019) 760)

PAS SMP-18-011

Phys. Rev. D 102 (2020) 092012

Multi-boson production

Production of Three Massive Gauge Bosons

- Triboson final states are among the leastknown SM processes due to their small production cross sections
- The presence of quadruple gauge boson interactions can be probed through VVV production
- First bservation by ATLAS with significance 4.1 standard deviations at 13 TeV!
- Observed by CMS as well (PRL 125 (202) 151802)

Decay channel	Significance		
	Observed	Expected	
WWW combined	3.2σ	2.4σ	
$WWW \rightarrow \ell \nu \ell \nu q q$	4.0σ	1.7σ	
$WWW \to \ell \nu \ell \nu \ell \nu$	1.0σ	2.0σ	
WVZ combined	3.2σ	2.0σ	
$WVZ \rightarrow \ell \nu q q \ell \ell$	0.5σ	1.0σ	
$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / q q \ell \ell \ell \ell$	3.5σ	1.8σ	
WVV combined	$ $ 4.1 σ	3.1 <i>o</i>	

Contributions from a TGC and QGC are not observed!

4 Lepton Processes

Accepted by JHEP, arXiv:2103.01918

			Region		
	Full	$Z \to 4\ell$	$H \rightarrow 4\ell$	Off-shell ZZ	On-shell ZZ
Measured	88.9	22.1	4.76	12.4	49.3
fiducial	±1.1 (stat.)	±0.7 (stat.)	±0.29 (stat.)	±0.5 (stat.)	±0.8 (stat.)
cross-section	±2.3 (syst.)	±1.1 (syst.)	±0.18 (syst.)	±0.6 (syst.)	±0.8 (syst.)
[fb]	±1.5 (lumi.)	±0.4 (lumi.)	±0.08 (lumi.)	±0.2 (lumi.)	±0.8 (lumi.)
	±3.0 (total)	±1.3 (total)	±0.35 (total)	±0.8 (total)	±1.3 (total)
Sherpa	86±5	23.6±1.5	4.57±0.21	11.5±0.7	46.0 ± 2.9
Powheg + Pythia8	83±5	21.2±1.3	4.38 ± 0.20	10.7 ± 0.7	46.4 ± 3.0

- Measurements can be used to set limits on variety of BSM models
- Measurements are performed as functions of kinematic variables primary (secondary) lepton pair
 - $(m_{12(34)}, p_{T,12(34)}), m_{4l}, |\Delta Y_{pair}|, |\Delta \varphi_{pair}|$
- Measurements agree well with predictions from Sherpa and Powheg in all regions

